Charm++ Applications

Laxmikant (Sanjay) Kale

http://charm.cs.illinois.edu
Parallel Programming Laboratory
Department of Computer Science
University of lllinois at Urbana Champaign

Applied Modeling & Simulation (AMS) Seminar Series
NASA Ames Research Center, July 14, 2014

ILLINOTIS PARALLELD

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN PROGRAMMING LAB m

DEPT.OF COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS

™

Exascale Challenges

 Main challenge: variability
— Static/dynamic
— Heterogeneity: processor types, process variation, ..
— Power/Temperature/Energy
— Component failure

* Exacerbated by strong scaling needs from apps
— Why?

* To deal with these, we must seek
— Not full automation
— Not full burden on app-developers

— But: a good division of labor between the system and app
developers

My Mantra

| call it a mantra because | will repeat it a lot in this talk.
And its going to be my message to App Developers on
how to get ready for Adaptive Runtimes

My Mantra

OM

My Mantra

Oh....Maybe the order
doesn’t matter

OMa

My Mantra

\/er@mosiﬁon
5yncﬁrony

igm’mﬁiﬁ’ty

Overdecomposition

* Decompose the work units & data units into
many more pieces than execution units

— Cores/Nodes/..
* Not so hard: we do decomposition anyway

—

\

Migratability

* Allow these work and data units to be migratable
at runtime

— i.e. the programmer or runtime, can move them

* Consequences for the app-developer

— Communication must now be addressed to logical
units with global names, not to physical processors

— But this is a good thing
* Consequences for RTS

— Must keep track of where each unit is
— Naming and location management

Asynchrony:

. Now: Message-Driven Execution

— You have multiple units on each processor
— They address each other via logical names

* Need for scheduling:

— What sequence should the work units execute in?

— One answer: let the programmer sequence them
e Seen in current codes, e.g. some AMR frameworks

— Message-driven execution:

* Let the work-unit that happens to have data (“message”)
available for it execute next

* Let the RTS select among ready work units

* Programmer should not specify what executes next, but can
influence it via priorities

Realization of this model in Charm++

 Overdecomposed entities: chares
— Chares are C++ objects

— With methods designated as “entry” methods
* Which can be invoked asynchronously by remote chares

— Chares are organized into indexed collections
e Each collection may have its own indexing scheme
— 1D, ..7D,
— Sparse
— Bitvector or string as an index
— Chares communicate via asynchronous method
invocations

* Ali].foo(....); Aisthe name of a collection, i is the index of the
particular chare.

(]]

Charm++: Object-based overdecomposition

* Multiple “indexed collections” of C++ objects

* Indices can be multi-dimensional and/or sparse

* Programmer expresses communication between objects
— with no reference to processors : A[1].foo(...)

=
./%%‘

User View

System implementation

llII[l{?}:%l
L ACT

. PPL

UI0C

Message-driven Execution

]
O~
!

9 0

~. A[..].foo(...)

Processor | P"\ocessor 2
Message Queue Message Queue

—

> PPL

UI0C

Message-driven Execution

Al..].foo(...)

EENNEREEEE N ENEN NEEER OB

Empowering the RTS

Adaptive
Runtime System
Introspection Adaptivity
Overdecomposition Migratability

e The Adaptive RTS can:
— Dynamically balance loads

— Optimize communication:
e Spread over time, async collectives
— Automatic latency tolerance
— Prefetch data with almost perfect predictability

17

Adaptive Runtime Systems

 Decomposing program into a large number of
Objects empowers the RTS, which can:
— Migrate Objects at will
— Schedule tasks (Dependent Execution Blocks) at will
— Instrument computation and communication at the
level of these logical units
* Object A communicates y bytes to B every iteration
* Sequential Block S has a high cache miss ratio
— Maintain historical data to track changes in application
behavior

* Historical => previous iterations
* E.g., to trigger load balancing

Benefits in Charm++

Scalable Tools

Automatic overlap of Communication
and Computation

essage-driven ex Perfect prefetch

compositionality

Fault Tolerance

Emulation for
Performance

Prediction

Dynamic load balancing (topology-aware,
scalable)

runtime system

Temperature/Power/Energy
Optimizations

19

Utility for Multi-cores, Many-cores,

Accelerators:

* Objects connote and promote locality

* Message-driven execution
— A strong principle of prediction for data and code use

— Much stronger than principle of locality
e Can use to scale memory wall:
* Prefetching of needed data: [M

— into scratch pad memories, for example
Processor 1

Scheduler

| | N

Message Queue

Impact on communication

* Current use of communication network:
— Compute-communicate cycles in typical MPIl apps
— So, the network is used for a fraction of time,
— and is on the critical path

e So, current communication networks are over-
engineered for by necessity

BSP based application

7/16/14 Charm++: HPC Council Stanford 21

Impact on communication

* With overdecomposition
— Communication is spread over an iteration

— Also, adaptive overlap of communication and
computation

P1

e
I

i
2 _ 1N

Overdecomposition enables overlap

7/16/14 Charm++: HPC Council Stanford

22

Empowering the RTS

{ Adaptive }

Runtime System

Asynchrony Migratability

« The Adaptive RTS can:
— Dynamically balance loads

— Optimize communication:
« Spread over time, async collectives
— Automatic latency tolerance
— Prefetch data with almost perfect predictability

» PPL

UIuc

=

e .
I}ﬂll
()R]

U
(-

Charm++ RTS

XARTS

WUDUs: Indexed collection,
Migratable threads,
Scalable sections (sub-communicators),
Location services

v

—» Fault tolerance protocols}

\,
S J
- J

~
N

Load balancers: I
intra-node, inter-node
—» Power-aware, Thermal-
aware, Topo-aware

>

Data-driven scheduler, user-
level threads, priority queues

Communication Libs
(Colletives/persistence)

Jdomauled UO!JDBdSOJJLH snonunuo:)]

LRTS: m/c specific implementations:
(start-up, communication, virtual mem. management)

Scalable Tools
Analysis, Debugging

%+ »» PPL

UI0C

ChaNGa: Parallel Gravity Evolution of Universe and
Galaxy Formation

« Collaborative project
(NSF)
— with Tom Quinn, Univ. of
Washington
« Gravity, gas dynamics

e Barnes-Hut tree codes
— QOct tree is natural decom

— Geometry has better
aspect ratios, so you
“open” up fewer nodes

— But is not used because it
leads to bad load balance

— Assumption: one-to-one With Charm++: Use Oct-Tree, and
map between sub-trees let Charm++ map subtrees to

and PEs

— Binary trees are considered
~ better load balanced

. 7/16/14 SIAM PP14

processors

[

II}A [|

. (=
m [l>1

ChaNGa: Cosmology Simulation

™ Collaboration with
Tom Quinn UW

S 9 - Tree: Represents
particle

distribution

\ ©, 9 () + TreePiece: object/

chares containing

A particles
O O O O

%3

(]]

PPL

UI0C

/

(I (O (R

ChaNGa: Optimized Performance

* Asynchronous, highly overlapped, phases
* Requests for remote data overlapped with
local computations

Time Profile

Remote Work

-
2
S
=
-
1)
o)
©
L
C
O
-
0
o

649,688s

Time (85.414ms resolution)

PPL

UI0C

}III

T
a
T

[1L §

Time per Step (s)

ChaNGa : a recent result

5 |2 B - -+ m e e e e e e me e e e s emes e e e emesem ek emhesem e imesems et ens et ans et mas e inas as s ns s naan
12G Time per Step =—dr— |2G Parallel Efficiency =%~ _ 9o

256 - 24G Time per Step =3¢ 24G Parallel Efficiency = === -

| 1 1 1 1 1 0

16384 32768 65536 131072 262144 524288

Number of Cores

Parallel Efficiency (%)

PPL

UI0C

Number of Messages

i
(0 (P

/
i
T

Clustered Dataset — Dwarf

BTGO0 [g
£ S —
DDEQ0 | rrromsrmroo oot e Time Profile
15000 |y gissbons bbb -
T N £
O ,h:f i i bt 3‘ 1 : v 2 E ;:é | e Time (2.7;7‘m: iesolution)
0 2000 4000 6000 8000

Processors

e Idle time due to

« Highly clustered message delays
 Maximum request per . Also, load imbalances:

processor: > 30K

solved by Hierarchical

balancers
. PPL
UIU0C

[} B 1

(]

}l []

a
..

Solution: Replication

=
D

h

PE2

i

i

PE 3

3

i
-

« Replicate tree nodes to distribute requests
« Requester randomly selects a replica

w PPL

UI0C

Number of Messages

5000

4000

3000

Replication Impact

Low EREY
Log R <. H
: N o
2000 |5
. b
d
.
£

g ¥ v ’ & < R k)
1000

0 2000 4000 6000 8000

Processors

With Replication —>é—
Without Replication =—f—

! ! “_ !)5 e et
B="na

& _L/-! a 1024 2048 4096 8192 16384
ER =8 Number of Cores

Percentage Utilization

Time Profile

23.3575s

Time (1.851ms resolution)

Replication distributes
requests

Maximum request
reduced from 30K to
4.5K

Gravity time reduced
from 2.4sto 1.7 s, on 8k

PR

UI0C

Multiple time-stepping!

« QOur scientist collaborators suggest an
algorithmic optimization:
— Don’t move slow-moving particles every step
 i.e. don’t calculate forces on them either

— In fact, make many (say 5) categories (rungs) of
particles based on their velocities
— Rung sequence (with 5 rungs)
©+4342434143424340
« Rung 0: all particles, Rung 4: fastest-moving particles

— Each tree-piece object now presents a different
load when different “rungs” are being calculated

(I
m

v
(]]

(1]
(=

(-

PPL

UI0C

%3

II}A []

[]
| [l>1

(]]

[]
. (=

Multiple time-stepping!

Load (for the same object) changes across rungs
— Yet, there is persistence within the same rung!
— So, specialized phase-aware balancers were developed

35000 260000 1
30000 -
800
25000 -
$ 20000 g 600
Q Q
3 3
2 15000 - - 400
10000 -
200
5000 -
0 - T I 0
0 05 1 15 2 0 05 1 15 2
Load Load
(a) Rung 0 (b) Rung 4 PPL

UI0C

Multi-stepping tradeoff

« Parallel efficiency is lower, but performance
is improved significantly

Time per Step =—>¢— Time per Step =3¢ _ 100

64k, ParallelBffcieney == TTTmmel . Parallel Bffciency ==

R
O 16 _ﬂ\‘\- €0

U T
- 40

Parallel Efficiency (%)

Time per Step (s)

-2

0

1 1 1
8192 16384 32768 65536 131072 192 le384 32768 63536 131072

Number of Cores Number of Cores

Single Stepping Multi Stepping

7=

[1L §

PPL

UI0C

mm
ma
T

(1 31

/

A

(-

My

(]]

NAMD: Biomolecular Simulations

Collaboration with K.
Schulten

With over 50,000
registered users

Scaled to most top US
supercomputers

In production use on
supercomputers and
clusters and desktops

Gordon Bell award in
2002

R0 o B A —— »
TR S e

3 R A L e e e e,
A Y s SRR S S,
: iyl i Ml g TS, R R e 5

< H
‘e S
' , PR ol
< A g -",“l\. ol
! sk s D e SOD <> A
S Y. L A AT

%
s,

Recent success:
Determination of the
structure of HIV capsid
by researchers including
Prof Schulten

)

UI0C

[

Time Profile of ApoA1 on Power7 PERCS

92,000 atom system, on 500+ nodes (16k cores)

Time Profile

2ms total

A snapshot of optimization in progress.. Not the final result

Percentage Utilization
Y Py [9

19.482s 19.4822s 19.4824s 19.4826s 19.4828s 19.483s 19.4832s 19.4834s 19.4836s 19.4838s 19.484s
Time (0.002ms resolution)

Luu Overlapped steps, as a result of asynchrony PRI
B/£ L 36 L1 L
mZE UIuC

L1 8 1
L] IWI
L1l 3

Timeline of ApoA1 on Power7 PERCS

. 230us :

In Microseconds

, i W Hﬂ 'ﬂ : oy
VR Wi e ™y
; 4% o el MMW_
e PRl 1 TETEPEEEERTTS H

e .| HWW t— HMH‘%

ol H #H e H IHHH W=
[5930296) 0 —— 1 [}‘.I‘_::“ Tl AW IMMW

o i\)iy i
. m# T i iy

e il TR, B R |

)

U10C

T T

(1]
(=

/

A

(-

My

(]]

NAMD: Strong

« HIV Capsid was a 64

million atom
simulation, including
explicit water atoms
Most biophysics
systems of interests
are 10M atoms or
less... maybe 100M

Strong scaling
desired to billions of
steps

Scaling

)

UI0C

Enhancing Asynchrony in NAMD

« Charm++ reductions are non-blocking

— So, you can do other work while reduction is
progressing through the system

* Synchronization:

— NAMD, when used with a barostat (NPT ensemble),
needs pressure from the current step to rescale volume

— So, no other work was performed during reduction

 Enhancing asynchrony:

— For strong scaling, the algebra was reworked to use
the results of the reduction one step later

— Overlapped reduction with an entire force computation
step

— 10% performance improvement on 16k nodes on Titan

[A b
(W(7
.

[J Y

(W

)

UI0C

. (I

[]

II}A [|

(=
m [l>1

B{fé {,

(]]

NAMD on Petascale Machines (2fs timestep with PME)

21M atoms

32

16

-

/=/‘ -
/E 224M atoms
2
2 | Z = |

Titan XK7 ——
Blue Waters XE6 —w— |

0.25 | | - Mira Blue Gene/Q |_E_

256 512 1024 2048 4096 8192 16384
Number of Nodes

\

Performance (ns per day)

0.5 |

NAMD strong scaling on Titan Cray XK7, Blue Waters Cray XE6, and
Mira IBM Blue Gene/Q for 21M and 224M atom benchmarks

PPL

UI0C

Structured AMR miniApp

%

}l []

[
(]]

(I
[1L §
[[ll>1

. PPL

UI0C

]
(0 (P

Structured AMR

Typical MPI Approach Charm++ Approach

) | d

N
\
\ 1 ’ \ \
\

1
|
}
1
]
|
|
}
}
\
1

JFOO O /0 0DIO 0O
/ e } ¢ d 0000 0001 0010 0011 1000 1010 1011 1100 1101 1110
IIII",, . . \“ E ,: v
P Pl P2 " : P4 ' P5
Process based Object based
Contiguous blocks « Each block is an independent object
assigned to a process « is the basic execution unit
« can be mapped to any physical
process
* is uniquely addressable
nn . :
Zii is migratable . PPL
=a uIuc

[]

[]
(=

PO

I:}A I:

W
CE T

Typical MPI Approach

P2

\
\
1
1
1

Structured AMR

@, ‘
\
) d
\
A \ |
\
1
O OO
: 4 0000 0001 0010 0011
1 1
| 1
[} 1
1 1 v
: ,' 100100 100101 100110 100111
1 1
P3 P4 P5

Mesh Restructuring

Charm-++ Approach

1100 1101 1110 1111

. PPL

Structured AMR

Typical MPI Approach
\\ 1 \
1
N
\ “ 1 \
\ 1 \
N \ 1 \
SO \ 1 1 ‘\
8 . \\‘ . ' \ ‘ '
N /
N T, ' \ \
\ A 'l ‘| X \ '
: ' :
h ’/ \‘ : -
Il -7 } l
] ,,” - : I'
,’ I} . .. : ,' v
/I : | I !
PO P1 P2 P3 P4 P5

Mesh Restructuring

t g

1

. Wy
ma
CRCT

[]
(]

Charm++ Approach

1100 1101 1110 1111

0000 0001 0010 0011 1000 1010 1011

100100 100101 100110 100111

. PPL

UI0C

Structured AMR
Charm++ Approach

Typical MPI Approach

\ 1 \

T |

|
}
1
}
|
1
}
}
\
1

o R S

0000 0001 1 1110 1111

P bl P2 ' P3 P4 ', s T in
Mesh Restructuring Mesh Restructuring
* Ripple Propagation Algorithm * Exchange messages with neighboring blocks
* Level-by-level » Update state using a state machine
e O(d) global reductions = * Quiescence to detect global consensus

O(d*logP
(d*logP) O(log P) time
Synchronization overhead » Blocks save current level of neighbors

* Tree-replication on each process * O(#blocks/P) memory per process

* O(#block
(#blocks) memory per process O(#blocks/P) space
Memory overhead 55 PPL
UI1uc

}III

T
a
T

[1L §

Structured AMR: State Machine

Required depth
Initial state
Decision

Received message
Local error condition

Termination detection

|
[]

[]
d II}AII
[1

&
o

(=

[]
(]

Coarsen

Stay 7 Refine
Coarsen,
Stay

i)

UI0C

[]

II}A []

(=

3
[]

| [l>1g
[] N

Testbed: IBM BG/Q Mira
Cray XK/6 Titan

=

Structured AMR: Performance

Steps per second

Advection Benchmark
First order method in

3d-space
— No Load Balancmg g
== Distributed Load Balaneging
128} -- Ideal |

o4t
32t
16¢
8_

7048 4096 8192 16384 32768 65536 131072
Number of Cores

i PPL

UI0C

(. (-
. (I

I;}: I:

(W

"L

Episimdemics

« Simulation of spread of contagion

— Code by Madhav Marathe, Keith Bisset, .. Vtech
— Original was in MPI

e Converted to Charm++

— Benefits: asynchronous reductions improved
performance considerably

s PPL

UI0C

(. (-

Simulating contagion over dynamic networks

P=l-exp(tlog(1-I'S)) ~ Location e TE social
o)
- t: duration of st) contact
: P
co-presence ““'"f§°ted L1 network
- I: infectivit .
Y ! S$ P3

- S:susceptivity

infectious L2 \
I P4

transition by
Local transition

EpiSimdemics' interaction A

@ Agent-based

@ Realistic population data

@ Intervention?

) 1.0
a
@ Co-evolving network,

behaV|or and pOIICy2 — untreated —» ---- vaccine ---%

LC. Barrett et al.,“EpiSimdemics: An Efficient Algorithm for Simulating the
Spread of Infectious Disease over Large Realistic Social Networks,” SC08
2K. Bisset et al., “Modeling Interaction Between Individuals, Social Net-
works and Public Policy to Support Public Health Epidemiology,” WSCO09.

Virginia Tech Network Dynamics & Simulation Science Lab April 30, 2014 3/26

Load distribution (vulcan)

RR Gp .Z BR Zp QP
splitLoc splitLoc | splitLoc | splitLoc

(1.755 s) 1 (1.583 s) (1.222 s) (0.438 s) (0.369 s){(0.368 S}

splitLoc: no peak in location computation GP: shorter person phase
Z-splitLoc: no load balance ZC-splitLoc: similar perf. w/ GP-splitLoc

@ Blue: person computation X-axis: Time Y-axis: Processor

@ Red: receiver's msg handling Timeline of an iteration from sampled subset of 332
@ Orange: location computation cores of total 4K using Michigan data on Vulcan

o
o Virginia Tech Network Dynamics & Simulation Science Lab April 30, 2014 24/ 26 L
o
T UIuC

o i i

—_
o

B Charm++ QD u
|] MPI Synchronization

(0]
!
]
1

Portion of Execution Time (%)
|

1 4 8 16 32 64 128 192 256 384 512 640 768
Number of PEs

Figure 10. The synchronization cost using contribute() and QD method
takes at most 4.23% of the total execution time while the MPI synchro-
nization cost linearly increases up to 14.5% as the number of PEs used
increases for simulating Arkansas population.

Strong scaling performance with the largest data set

100 Strong Scaling (BlueWaters | XE6) : 100 Strong Scaling (Vulcan | BG/Q)
N RR-splitLoc, noBuf - -3¢ -- 2
> RR, mbuf =-—e-= >
© Seh RR-splitLoc, mbuf =~ =---¢-— ©
§ 10 p Ay e & 10 -
o r o, -~ o C ST

o 9. . N NG W@ e A

£ e %""‘Jk ---- Ay A e = T hd
= Sea M ‘S \.’\.
c ."'\.* b SN c RR, mbuf =-=fe-— i
8 1F . X\ 359K _8 1 3 RR, TRAM «eeri@eeee
o "-C._‘ o F RR-splitLoc, mbuf ==
g i \.,* l g - RR-splitLoc, noBuf
) I S n - RR-splitloc, TRAM —f—

01 | | | | | | | | | *’é 01 | | | | | | | |

256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 1K 2K 4K 8K 16K 32K 64K 128K
Number of core-modules Number of cores

100 ¢ - Strong Scaling (Xeon, Infiniband) . .
P RR-splitLoc Corra TRA @ Contiguous US population data
2 - ierra, TRAM ceee-g@e---
> Cab, TRAM ===)
z X-., Shadowfax, Mbuf = = 3 = - @ XEG6: the largest scale (352K cores)
o 10 Xl g R :)
> **'a.,% @ BG/Q: good scaling up to 128K cores
.g . . : :
= \ @ Strong scaling helps timely reaction to
S 1 e ve. , :
© i S pandemic
g ""O..,.
=

01 | | | | | | |

256 512 1K 2K 4K 8K 15K

| Number of cores

Virginia Tech Network Dynamics & Simulation Science Lab April 30, 2014 26 /26

}III

(LA
A

(=

(-

OpenAtom

Car-Parinello Molecular Dynamics
NSF ITR 2001-2007, IBM, DOE,NSF

Molecular Clusters : Nanowires:

Recent NSF SSI-SI2 grant
With
G. Martyna (IBM)
Sohrab Ismail-Beigi

Semiconductor Surfaces: 3D- Sghds/Uqwds
, R G e R T
Usmg Charm++ virtualization, we can efficiently scale

small (32 molecule) systems to thousands of processors

&ﬁ“
‘;ﬁ,&% \%; 53 PPL

UI0C

i

(]]

Decomposition and Computation

rIAIl'

= ! | > || | | <. Reducton > Reduction
Pt
Fad .
Pair Calculator 7"~ ———— Multicast
s,
ooo E‘:/ : : : :
[2 - P P S
oo~ M transpese Pl .
Ortho »HB00 RN -
& SO]] : : i EE- 4
NN . [R |
U RhoR
"\ I oo
S>T QOooo ©
g E % E] RhoRHart
(]|
R /|
\ >
\ SO Gspace RealSpace
v v
IX Non-Local \J

RhoGHart Density

e SN\ ¢ Transpose e

B %a
i s PPL
T 21 U10C

Topology Aware Mapping of Objects

Density

3D Torus of

the machine m
AR Planes
RS 1K

RealSpace

block_size

PairCalculator

Planes

RealSpace Prisms \
perpendicular to
Gspace Prisms States
7"

Rectangular
Gspace
Prisms

Planes

"

. N | |
e - PPL
T o1o¢

Improvements by topological aware
mapping of computation to processors

ety X desdtip bewker’ 2} =
5% pmartyna’s X desktop (bgwfen:2) = =] Sl 5 Sec Ste N
Ve G TGO e i eIl A .

vl | e live.ovs

e g
i anlocal il 74

Punchline: Overdecomposition into Migratable Objects created the

degree of freedom needed for flexible mapping

1<

The simulation of the left panel, maps computational work to processors taking the network
connectivity into account while the right panel simulation does not. The “black’ or idle time

processors spent waiting for computational work to arrive on processors is significantly
& &MNiced at left. (256waters, 70R, on BG/L 4096 cores)

u
u
71

s PPL

UI0C

(I
.
(=
.

[

II}A [|

. (=
m [l>1

%3

OpenAtom Performance Sampler

(]]

Ongoing work on:

K-points

Timestep (secs/step)

32

OpenAtom running WATER 256M 70Ry on various platforms

S
~
S
~

Blue Gene/L ---x---
Blue Gene/P ------
Cray XT3 —+—

~
~
~
~
~
~
~o
~

512

x*~
e el |
""""" * T
| | | |
1K 2K 4K 8K 16K
No. of cores

s PPL

UI0C

L

}l []

[
(]]

(I
[1L §
m ll>1

MiniApps

oo

Overdecomposition, BG/Q 131,072
Custom array index,
Message priorities,
Load Balancing,
Checkpoint restart

LeanMD Overdecomposition, BG/P 131,072
Load Balancing, BG/Q 32,768

Checkpoint restart,
Power awareness

Barnes—Hut Overdecomposition, Blue Waters 16,384
(n-body) Message priorities,
Load Balancing

LULESH 2.02 AMPI, Over- Hopper 8,000
decomposition, Load
Balancing

PDES Overdecomposition, Stampede 4,096
Message priorities,
TRAM

PPL

UI0C

More MiniApps

Mini-App

g
TET

e e
A

. (I II}I (

1D FFT Interoperable with BG/P 65,536
MPI BG/Q 16,384
Random Access TRAM BG/P 131,072
BG/Q 16,384
Dense LU SDAG XT5 8,192
Sparse Triangular SDAG BG/P 512
Solver
GTC SDAG BG/Q 1,024
SPH Blue Waters -

(. (-
. (I

I;}: I:

(W

"L

Where are Exascale Issues?

« | didn’t bring up exascale at all so far..

— Overdecomposition, migratability, asynchrony
were needed on yesterday’s machines too

— And the app community has been using them

— But:

« On *some* of the applications, and maybe without a
common general-purpose RTS

« The same concepts help at exascale
— Not just help, they are necessary, and adequate
— As long as the RTS capabilities are improved

« We have to apply overdecomposition to all
(most) apps

« PPL

UI0C

[A ¥
(I (O (R

/

[] [l‘\ﬁ"f 1

A message of this talk

Intelligent, introspective, Adaptive
Runtime Systems, developed for handling
application’s dynamic variability, already
have features that can deal with
challenges posed by exascale hardware

PPL

UI0C

Fault Tolerance in Charm++/AMPI

 Four approaches available: Demo at Tech
— Disk-based checkpoint/restart Marketplace
— In-memory double checkpoint w auto. restart
— Proactive object migration
— Message-logging: scalable fault tolerance

« Common Features:
— Easy checkpoint: migrate-to-disk
— Based on dynamic runtime capabilities
— Use of object-migration

— Can be used in concert with load-balancing
schemes

-
i

(LA
A
CRCT

(=

(-

« PPL

UI0C

Extensions to fault recovery

« Based on the same over-decomposition
ideas
— Use NVRAM instead of DRAM for checkpoints

« Non-blocking variants
« [Cluster 2012] Xiang Ni et al.

— Replica-based soft-and-hard-error handling
* As a “gold-standard” to optimize against
« [SC 13] Xiang Ni, E. Meneses, N. Jain, et al.

[|
i

(1]
(]]

(=

« PPL

UI0C

}III

a
T

(. (-
[1L §

Saving Cooling Energy

Demo at Tech

Easy: increase A/C setting Marketplace

— But: some cores may get too hot

So, reduce frequency if temperature is high (DVFS)
— Independently for each chip

But, this creates a load imbalance!

No problem, we can handle that:

— Migrate objects away from the slowed-down processors
— Balance load using an existing strategy

— Strategies take speed of processors into account

Implemented in experimental version
— SC 2011 paper, IEEE TC paper

Several new power/energy-related strategies

— PASA ‘12: Exploiting differential sensitivities of code segments
to frequency change

« PPL

UI0C

[} B 1
. (I II}I [|
m ll>1

PARM:Power Aware Resource Manager

« Charm++ RTS facilitates malleable jobs

« PARM can improve throughput under a fixed
power budget using:

— overprovisioning (adding more nodes than
conventional data center)

— RAPL (capping power consumption of nodes)
— Job malleability and moldability

Power Aware Resource Manager
= (PARM)
Profiler :
Scheduler fEXECUl‘IOﬂk
Strong Scaling ramewor
N~ Schedule
Power Aware Model Ea Jobs (LP) P| Launch Jobs/
. Shrink-Expand
Job Characteristics
Dataife lélpdate Ensure Power
ueue rﬂ Cap
\ . \ -
7 \ \A
. . \ Job Ends/
Triggers Terminates
an
a PPL
| - =
[| UI10C

nym
g

A

(. (-

. (I
(]]

Costs of Overdecomposition?

We examined the “Pro”’s so far
Cons and remedies:

Scheduling overhead?
— Not much at all
— In fact get benefits due to blocking

Memory in ghost layer increases

— Fuse local regions with compiler support

— Fetch one ghost layer at a time

— Hybridize (pthreads/openMP inside objects/DEBs)

Less control over scheduling?

— i.e. too much asynchrony?

— But can be controlled in various ways by an observant RTS/programmer
For domain-decomposition based solvers, may increase number
of iterations

— You can lift it to node-level overdecomposition (use openMP inside)

— Also, other ideas:

Too radical and new?

— Well, its working well for the past 10-15 years in multiple applications,
via Charm++ and AMPI

« PPL

How can
Application Developers
get ready for
Adaptive RTSs?

PPL
u1uC

Its not that weird or new

* First, note:

— The techniques | advocated were needed for
dynamic irregular apps even on yesterday’s
machines

 Just that they need to be applied to even regular apps

« How Charm++ meets exascale challenges already,
almost

— How we got so lucky: because of these irregular
apps

The adaptivity that was created via overdecomposition,
migratability, & asynchrony, for dynamic applications, is
also useful for handling machine variability at exascale

}III

T
a
T

[1L §

PR

UI0C

Summary

« Charm++ embodies an adaptive, introspective
runtime system

« Many applications have been developed using it
— NAMD, ChaNGa, Episimdemics, OpenAtom, ...
— Many miniApps, and third-party apps

« Adaptivity developed for apps is useful for
addressing exascale challenges
— Resilience, power/temperature optimizations, ..

More info on Charm++:
http://charm.cs.illinois.edu
Including the miniApps

R I;}‘I I:

(. (-
m
(]]

. PRL

UI0C

(]
i

A recently
published book
surveys seven
major applications
developed using
Charm++

More info on Charm+-+:
http://charm.cs.1llinois.edu
Including the miniApps

(. (-
. (I II}III
B gF |

(W

AN
T L

Parallel Science and Engineering Applications

The Charm++ Approach

Edited by

Laxmikant V. Kale
Abhinav Bhatele

o PPL

UI0C

