National Aéronautics and Space Administration

, — Moving Beyond Shared-
Memo‘ry Parallelism

Henry Jin |
| Computatlonal Technologies Branch . . e
NRS Pivision, NASA Ames Research Qentef: 6.

'Applled Modelmg & Slmulatlon (AMS) Semlnar Serlgas
NASA Ames Research Center, SeptembeE 2,2014 & s ;-.

/

 Brief history of OpenMP

* Requirements from modern computing architectures

« Development of OpenMP 4
— Supporting new types of parallelism
— Towards awareness of non-uniform memory access

* Challenges in achieving desired performance
* Future effort

National Aeronautics and Space Administration OpenMP — AMS Seminar 2
|

* The de-facto standard for shared-memory multiprocessing programming
— The API consists of compiler directives and library routines for C/C++ and Fortran
— Specification defined and maintained by the OpenMP Architecture Review Board

— Implemented and supported by many compiler vendors

» Brief history
— First version released in 1997
— Current version 4.0 released in 2013

OpenMIP

www.openmp.org

e oL = 3-0 Sup:c;(t‘)tfor
Fortran = Fortran 2.5 Tasking, 3.1 e
Loop Minor Array Merged nested Tasking ol
parallelism clarifications reduction, Fortran parallelism, refinement, evices,
workshare, loop collapse, extended SIMD parallelism, a1
timer and C/C++ resource atomics, user-defined -
Mostly control min&max reductions, 5.0
clarifications reduction for dependent tasks,
1.0 2.0 C/C++ thread affinity,
C/C++ C/C++ Fortran 2003,
. ' cancellation
1997 1999 2002 2008 2011 2013 2015,17
1998 2000

National Aeronautics and Space Administration

OpenMP — AMS Seminar

« The Fork-and-Join model
— Global view of application memory space
— Thread oriented with task support

Parallel

Region 2 Parallel
Region 3

Parallel
Region 1

Master
Thread

Master

> Master
Thread

Thread

Thread

- Application and strength
— Often used for exploiting parallelism on a node
— When mixed with MPI

* Maps reasonably well with multicore architectures
— Path for incremental parallelization

National Aeronautics and Space Administration OpenMP — AMS Seminar 4

Multiple processing cores Multiple sockets in a Accelerator devices
in a socket host node attached to the host

eé O O O e ee O O O e

L2 | | L2 L2 L2 | | L2 L2 e S
L3 L3
Memory Network Socket PIEY Socket Network Memory
Controller Interface Interconnect Interconnect Interface Controller
I 1 I
N'I-Oca' Connection across N'I-Oca'
emo emo
v the sockets Y

Distributed memory cluster
of multi-socket nodes

Within a node: mix of different processor and memory types

National Aeronautics and Space Administration OpenMP — AMS Seminar 5

- Heterogeneous computing node
— Multi-core and/or many-core processors
— Host processors attached with accelerator devices (such GPUs, Intel MIC)
— Parallelism at multiple hardware levels
— Non-uniform memory access, disjoint memory access

« Mismatch of OpenMP 3 with modern architecture
— No concept of non-uniform memory access
— No handle for disjoint memory
— Unaware of parallelism at different hardware levels
« SIMD/MIMD parallelism
— No support for accelerators

« OpenMP 4 was developed to overcome many of the deficiencies

National Aeronautics and Space Administration OpenMP — AMS Seminar 6
|

- Support for accelerator devices (target construct)
« Initial support for error model (cancel construct)

+ Task dependences (depend clause)

- Deep task synchronization (taskgroup construct)
* Fortran 2003 initial support

« User-defined reduction (declare reduction construct)

- SIMD extensions for vector parallelism (simd construct)
- Thread affinity (proc_bind clause and OMP_PLACES)

* Further enhancement to atomic operations

- Display OpenMP environment variables

National Aeronautics and Space Administration OpenMP — AMS Seminar 7
|

- Support for accelerator devices (target construct)*

- SIMD extensions for vector parallelism (simd construct)*
« Thread affinity (proc_bind clause and OMP_PLACES)*

* Focus of this talk

National Aeronautics and Space Administration OpenMP — AMS Seminar 8
|

* Host driven model
— Host initiates execution
— Host offloads work to devices
— Host manages data transfer between host and devices

- Two types parallelism on accelerators:
— SIMD - single instruction multiple data, such as
« Threads in a single warp or single thread block in NVIDIA GPUs

* Vector processing units in Intel Xeon Phis

— MIMD — multiple instructions multiple data, such as
« Multiple thread blocks executed in parallel on different NVIDIA multiprocessors
« Threads spread across multiple cores

- Concurrency between host and devices
- Disjoint memory between host and devices

National Aeronautics and Space Administration OpenMP — AMS Seminar 9
|

* Host offloads task to accelerator
— The task is defined by the target construct

- Host manages data transfer (mapping)
— Via the map clause

— Allocating device data and transferring to
device at entry to the target region

— Transferring from device and deallocating
device data at exit from the target region

- Host waits for completion of the target
region on device

In C:
int n,i;
float a,*x,*y,*z;
#pragma omp ta
map(to:x(:n),y(:n)) map(from:z(:n))
for (i = 0; i < n; i++)
z[1] = a*x[i] + y[i];

[Array notation]

Device
Device
Copy data
to device Memory
Application Applicatio
data data
Copy data
from device
5 Device
offloaded t¢
g’celerator
In Fortran:
integer :: n,i

real :: a,x(n),y(n),z(n)
I$omp target &
1$omp& map(to:x,y) map(from:z)
doi=1, n
z(1i) = a*x(1i) + y(i)
end do

10

- Target region is executed by a single team of threads by default

 Inside the target region follows the regular OpenMP execution model
— May contain other OpenMP constructs except for the target related constructs
* Multiple teams may be defined by the teams construct
— Mapped to MIMD parallelism on GPUs

— Each team has its own contention group for thread synchronization
— The distribute construct distributes loop iterations over teams

In C: Combined | In Fortran:
int n,i; [constructs integer :: n,i
float a, *x,*y, *z; real :: a,x(n),y(n),z(n)
#pragma omp target teams \ I$omp target teams &
map(to:x(:n),y(:n)) map(from:z(:n)) I$omp& map(to:x,y) map(from:z)
{ I$omp distribute parallel do
#pragma omp distribute parallel for doi=1, n
for (1 = 9; i < n; i++) z(1i) = a*x(i) + y(i)
z[1] = a*x[1i] + y[i]; end do
} I$omp end target teams

National Aeronautics and Space Administration OpenMP — AMS Seminar 11

« The MG offload codes on Intel Xeon
Phi

1024

512

* Three different versions with different
granularity for offloading
— One OpenMP loop, many data transfers
— One subroutine, rest on host

— Whole computation with single data 16
transfer at the beginning and at the end

128

Time (secs)
()]
=y

W
N

 Overhead from data transfer can be
substantial

National Aeronautics and Space Administration

Performance of MG in Native and Offload Modes

I I I I I I I
—A— Host native —#— Offload one OMP loop

—m— MIC native —e— Offload one subroutine =

—-e— Offload whole computation

4 \‘i\»\“_/—ﬂsu—g——ﬁ

N X
\\'\\'\

~)
RN J

Better

1 2 4 8 16 32 60 120 240
Number of Threads

Saini et el. at the SC13 conference.

OpenMP — AMS Seminar 12

128

[»I
a) Pleiades-GPU b) hyperwall-GPU
= = 74*&*4**4*_
= |
A — A—A—A—A,
AT A T
A -
8 , 16x
o 32x
G 4 v
B0
2 Nt oro—g-
L — - s S el
05 & . -
0.25 o~ ‘\
0.125 l ¥ % >
256 512 1024 2048 4096 8192 256 512 1024 2048 4096 8192
Problem Size Problem Size

—x— cuda kernel, simple —A— kernel, acc directive —&— host, simple
—%— cuda kernel, cached —®— gpu+data copy —=&— host, blocked

= Performance of acc directive is close to that of the cuda versions when not
considering data transfer between the host and the device

= When considering data transfer, GPU performance is about the same as the host

National Aeronautics and Space Administration OpenMP — AMS Seminar

better

13

Target data region

— Specified by the target data construct

— Allocating and transferring device data via

the map clause
— Codes executed by host, not by device

Declare target directive

— Allocates global data on device
— Declares device functions/procedures

The present test

— No implicit data transfer at target and
target data constructs if a variable is
already mapped either by target data

construct or by declare target directive
Target update construct

— Performs explicit data transfer

National Aeronautics and Space Administration

C Example:

int n,i;

float a, *x,*y, *z;

init(x, y, n);

#pragma omp target data \
map(to:x[:n],y[:n]) map(from:z[:n])

{
#pragma omp target
#pragma omp parallel for
for (i = 0; 1 < n; i++)
z[1] = a*x[1] + y[i];
init_again(x,y,n);
#pragma omp target update
to(x[:n],y[:n])
#pragma omp target
#pragma omp parallel for
for (i =9; i < n; i++)
z[1i] += a*x[1i] + y[i];

No data
transfer

}
output(z, n);

OpenMP — AMS Seminar 14

Purpose
— Overlap host and device computation
— Hide data transfer overhead

Synchronous execution of target
construct
— Host task has to wait for the completion
of the offloaded code
Indirect solution
— Wrap target construct inside a task
— Use taskwait to synchronize execution

— Carry all the baggage of the tasking
model

 Task data environment

National Aeronautics and Space Administration

C Example:
int n,i;

float a,*x,*y,*z,*p; —)
Y P Explicit task with
init(x, y, n); target region

#pragma omp task shared(x,y)
{
#pragma omp target \
map(to:x[:n],y[:n]) map(from:z[:n])
#pragma omp parallel for
for (1 =0; 1 < n; i++)

z[i] = a*x[i] + y[i];| Explicit task

} for host

1

#pragma omp task shared(p)
compute p(p, n);

Wait for task |

#pragma omp taskwait completion |

output(z, p, n);

OpenMP — AMS Seminar

15

« Single Instruction Multiple Data (SIMD) or
vector instruction

for (1 =9; 1 < n; i++) ’
= x[1] + y[i];

Process multiple data in one instruction z[i]

Supported on many types of hardware

- Compiler auto-vectorization in general vioad(x)

Inner-most loop
No function calls
Independent loop iterations vioad(y)
Compiler directives as hints

vadd

« SIMD in OpenMP

For cases where compiler cannot perform auto- vstore(z)
vectorization

Prescriptive in nature, user responsible for
correctness

Support for function calls

National Aeronautics and Space Administration

x[0]

®

y[e]

y[1] | y[2]

| |

z[9]

z[1] | z[2]

OpenMP — AMS Seminar 16

Simd construct

— Applies to a loop to indicate that multiple iterations of the loop can be executed

concurrently using SIMD instructions

Loop SIMD or distribute simd construct

— Specifies that a loop is first distributed among team of threads (loop SIMD) or teams
(distribute simd) in chunks and then each chunk is applied with the simd construct

A simple example:
#pragma omp declare simd uniform(fact)
double add(double a, double b,
double fact)
{ return (a + b + fact); }
void work(double *a, double *b, int n)
{ int 1i;
#pragma omp simd
for (i = 0; i < n; i++)
a[i] = add(a[i], b[i], 1.0);
}

National Aeronautics and Space Administration

A more convoluted example:

int n,i;

float *x,*y,*z;

init(x, y, n);

#pragma omp target teams \
map(to:x(:n),y(:n)) map(from:z(:n))

{
#pragma omp distribute simd
for (i =0; i < n; i++)

z[1] = x[1] * y[i];
}
output(z, n);

OpenMP — AMS Seminar

17

« Thread-processor binding
— Map OpenMP threads to hardware resources (such as cores)
— Logical processor units via the OMP_PLACES environment variable
— Affinity policy (close, spread, master) for threads in parallel regions
— Handling thread affinity in nested parallel regions

- Benefit
— May improve performance by NPB3.3-OMP CLASS=C

on Intel SandyBridge Node (#cores=16)
T T T T T T T

reducing OS scheduling overhead
and improving resource utilization

— Reduce runt-to-run timing variation

-
(=]
o

[Jomp threads = 8
B omp threads = 16 —

(o]
(=]

60 — =

40 | -

o O [T L |_| H
] _

-20 ! ! ! ! ! ! !
BT CG EP FT IS LU MG SP

Example of using thread binding
from two types of affinity settings
to improve resource utilization

Close vs. Spread (% Change)

National Aeronautics and Space Administration OpenMP — AMS Seminar 18
|

Examples of OMP_NUM_THREADS=8 on a node with two quad-core sockets with HyperThreading

OMP_PLACES="{o0,8},{1,9},{2,10},{3,11},{4,12},{5,13},{6,14},{7,15}”

proc_bind(close) —better cache sharing between threads

Socket 0 Socket 1
— N\ ~J
Core 0 Core 1 Core 2 Core 3 Core 0 Core 1
ER N R R R e]
P4 P12 P5
Thread id 0 1 2 3 4 5 6 7

proc_bind(spread) — maximizing memory bandwidth utilization

Socket 0 Socket 1
Core 0 Core 1 Core 2 I Core 3 Core 0 Core 1
\
EE=D ﬁ =5 B ﬁﬁ ﬁ

Thread id 0

proc_bind(master) - assigning threads to the same place as the master

— “spread” usually gives better results for most cases
19

- Software development
— For accelerator devices
 Identify and offload hotspots

* Minimize data transfer overhead
— Exploiting sufficient parallelism at different levels to match with hardware
« Cores, threads, vectors
— Data structure consideration
« Stride-one memory access
« Cache blocking
— Code maodification is often required, but may not be portable

- Application development
— Need enough parallelism to match with hardware
— Potentially require different numerical algorithms
— Concern about performance, load balance

National Aeronautics and Space Administration OpenMP — AMS Seminar 20
|

serial codes

simple-minded
direct‘iveAcodes

optimized
direcﬁxe codes

data transfer

memaory access

compute_rhs 16.21 15.82 126.84 38.37 3.47 3.47 3.41 1.72
x_solve 6.08 6.90 35.91 25.77 22.48 7.56 3.09 2.55
y_solve 6.20 6.26 34.39 20.51 17.27 2.07 2.11 1.74
z_solve 6.35 6.99 32.33 20.78 17.46 2.45 2.49 1.71

add 1.09 0.76 16.56 0.20 0.20 0.20 0.20 015
rest 3.88 2.49 57.89 5.30 0.94 0.94 0.95 0.18
total 39.81 39.22 302.58 110.56 61.65 16.63 12.22 8.03
GPUkrnl 0.00 0.00 9.37 59.60 59.7 15.14 10.32 7.34
GPUcomm 0.00 000 [<€243.21 50.96_ 1.87\\1-.-49-\\ 1.90 0.69

e Jinetal., at IWOMP2012. dominated by inefficient

SP Benchmark (CLASS A) on Pleiades-GPU

Performance Improvement

mlocal
mirror

simple [Jdim-prom

@ data-trans
B cuda

7 better

baseline

= The simple and mlocal versions show much worse performance than baseline, dominated by data
transfer between the host and the device

= The mirror version is limited by the kernel performance of the three solvers

= Code restructure in dim-prom and data-trans for better memory coalescing is the key for further

improvement

National Aeronautics and Space Administration

OpenMP — AMS Seminar 22

— Remote data access is more expensive
* May cause memory access bottleneck
— Data layout and memory affinity are important

300 T T T T T T
BT CLASS=B

250

@ First touch loop

B Data on one
location

0O Data distributed
over locations |

@ Data distributed

randomly

Time (secs)
- - N
(=] (4} (=]
o o o

a
(=}

8 16 32 64
Number of Threads

500

400

300

200

100

T T
BT CLASS=C

@ First touch loop |

B Data on one
location

O Data distributed
over locations

randomly

16 32 64 128
Number of Threads

- Performance of BT from the NAS Parallel Benchmarks on the SGI Altix
- Four types of data layout based on how data are initially distributed

@ Data distributed l

Better

23

* Work in progress within the OpenMP language committee
— Technical report on extensions for accelerator support by SC14
— The 4.1 release targeted for SC15
— Features considered for 5.0

* New features under consideration
— Refinement to accelerator device support
e Unstructured data movement

« Asynchronous execution
* Multiple device types
— Full error model
— Full Fortran 2003 support
— Interoperability with other models (MPI, pthreads)
— Support for NUMA
* Memory affinity
— Tools interface

National Aeronautics and Space Administration OpenMP — AMS Seminar 24

* Unstructured data movement
— target enter data construct
— target exit data construct

« Asynchronous execution
— Better integration with the tasking model
« target task
— Flexible control via task dependency
« depend clause on target construct

National Aeronautics and Space Administration OpenMP — AMS Seminar 25
I ————

nary

* OpenMP has been moving beyond shared memory parallelism
— Support for accelerator devices
« Many features were adopted from OpenACC
— Ability to exploit hierarchical multi-level parallelism
« MIMD via teams construct
* Thread level via parallel loop construct
« SIMD via simd construct

 OpenMP’s new mission statement

“Standardize directive-based multi-language high-level parallelism that is performant,
productive and portable.”

- Compilers with OpenMP support are widely available
— Although support for 4.0 is still in work

26

* Achieving desired performance in applications is still challenging
— Exploiting multi-level parallelism
— Reducing cost of data transfer between the host and the device
— Optimizing memory accesses
« Changes to code structure may be needed, but not always portable

* More experience is needed to experiment with the new features

National Aeronautics and Space Administration OpenMP — AMS Seminar 27
I ————

OpenMP ARB members

— Permanent members: AMD, Convey, Cray, Fujitsu, HP, IBM, Intel, NEC, NVIDIA,
Oracle, Red Hat, STMicro, Texas Instruments

— Auxiliary members: ANL, Barcelona Supercomputing Center, cOMPunity, EPCC,
LANL, LLNL, NASA Ames, ORNL, RWTH Aachen University, SNL, University of
Houston, TACC

National Aeronautics and Space Administration OpenMP — AMS Seminar 28

« OpenMP specifications
— www.openmp.org/wp/openmp-specifications/

- Resources
— www.openmp.org/wp/resources/
— www.compunity.org/
— “OpenMP and OpenACC — A Comparison,” James Beyer, GPU Technology
Conference, April 2014.
- Benchmarks

— OpenMP Microbenchmarks from EPCC
(www.epcc.ed.ac.uk/research/openmpbench)

— NAS Parallel Benchmarks
(www.nas.nasa.gov/publications/npb.html)

29

