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  Motivation/Introduction 
              Motivation and introduction to immersed boundary methods. 

  Immersed Boundary Method 
             All aspects of immersed boundary method for CNSE  
 

   Basic Concept 
                Introduces basic idea of immersed boundary method. 
 

   Extension to Compressible Navier-Stokes Equations 
                Presents additions to original IIM. 
 

   Imposition of Pressure BCs and Viscous Terms 
                Different BC extrapolations schemes and conservative/non-conservative IIM. 
 

  Stability Analysis 
             Demonstrates stability of immersed method. 
 

  Computed Results 
             Flow around cylinder/sphere, porous wall, discrete roughness. 
 

  Error Convergence Study 
             Verifies formal order-of-accuracy with method of manufactured solution. 
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q  Pros 
§  Grid generation process is greatly simplified! 
§  Advantages for moving or deforming geometries:  
      Fluid structure interaction, shape optimization, etc. 
§  Cartesian mesh offers friendlier memory layout 

q  Cons 
§  Usually lower order accurate (or robustness issues) 
 

§  Boundary layer resolution for high Reynolds numbers 
§  Less flexibility w.r.t. grid point distribution 
 

q  Main attributes of current method 
§  Higher-order accurate 
§  Sharp interface method 
§  Optimal stencil coefficients w.r.t. numerical stability 

Stair-Step Approach 

Forcing Approach 

Sharp Interface 
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+Diffusion Equation 

ψ=1×10-7 

o: ReΔx=0.1 
x: ReΔx=1 
*: ReΔx=10  

Linnick’s compact IB Method, O(Δx4), in streamfunction vorticity formulation: 

Advection Equation 
x: ψ=1×10-7 

o: ψ=0.5 

ReΔx = cxΔx/µ = CFL/DFL   
CFL=cxΔt/Δx 
DFL=µΔt/Δx2 

Definitions: 

Linnick and Fasel (2004) 



Cavity flow Re=400 
(Brehm and Fasel, 2010a) 

Q-criterion (Q=1) 

unsteady sphere flow,  
Re=1,000 

Q-criterion & streamwise velocity Q-criterion & streamwise vorticity 

NACA 643-618, 
 Re=64,000,  

Brehm et al., 2008 

pulsatile stenotic flow, Re=500, S=75%, λ/R=8,Brehm et al.(2011, 2012) 

Q-criterion (Q=3) 
v-velocity  

NACA0015,  
Re=1,000-10,000 

(Brehm and Fasel, 2011a, 2011b) 

streamlines flow past distributed 
roughness,  
Brehm et al. (2011),  
experiments by Prof. 
Gaster, London, UK 

 Incompressible Navier-Stokes 

NACA0012, Re=100,000 
(Brehm and Fasel, 2012) 

FSI of Flexible Filament 
(Brehm and Fasel, 2011) 



Motivation – NASA Relevant IB Applications 
                                Unsteady Flows 

6 

jaxa 

sofia 

Ignition Over-Pressure Wave 

Flame Trench Pressure Environment  

Unsteady Loads 

Open Cavity (SOFIA) 

Landing Gear Noise (BANC III) 

Jet Impingement 

6 LAVA CFD solutions (LAVA developed at NASA Ames) 
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q  Solving compressible Navier-Stokes equations 
q  Convective terms ~ O (Δx2n-1), O(Δx2n) 

q  Flux vector splitting  
(Lax Friedrichs, van Leer, AUSMPW+, etc.) 
 

q  Various discretization options  
Here: node-centered upwind finite differences 

 
ck stencil coefficients, α upwind factor, Δx  
averaged grid spacing, and Ns stencil half width  
 
q  For α=0: higher-order filtering  (Visbal & Gaitonde, 1998) 

q  Higher-order shock capturing compact FD (AIAA-2014-1278) 
 

Truncation Error (inviscid) 
by method of manufactured solutions  
 



Interior Scheme 
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q  Runge-Kutta time-integrator (Shu-Osher form) 
q  Curvilinear coordinates 
q  Block-structured Cartesian with AMR 
q  Guard cell filling up to 4th-order accurate  
q  MPI-parallel 
 

q  Viscous terms ~ O(Δx2n), here O(Δx4) 
 

q  Conservative form (Visc2) 

q  Non-conservative (Visc3) x
||
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Truncation Error (viscous) 
by method of manufactured solutions  
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q  Initial observation:  
“Stability of numerical scheme can 
be formulated as N-dimensional  
optimization problem”  
(N=number of irregular grid points) 

q  Enforce order-of-accuracy 

 
q  Additional grid point is needed to introduce free parameter  
q  Objective function depends on the nature of the PDE, e.g., λr,max or ρ(A)  

q  Extract perturbation of irregular finite difference stencil (assume B=I) 

Irregular 
grid point 

Brehm and Fasel (JCP, 2013) 



Basic Concept of Stability Enhancement 
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q  Possible to solve N-dimensional  
      optimization problem 
 

q  Apply localization of FD stencil 
§  Turns N-dimensional problem 
into 1-D problem  
§  More practical (e.g., FSI) 
§  Localization has been demonstrated 
in Brehm and Fasel (2013) 

optimization problem 



Localization Assumption 
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Recursion formula for  (1,1)-coefficient  
of inverse of 
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Extension of IIM to Compressible NSE 
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q  Basic ideas are discussed for 1D Euler-equation 
 

 
q  Flux Vector Splitting (not excluding FDS) 

 
q  Linearization 

 
 
 

q  Forward Difference,  
§   apply stencil optimization procedure 

q  Backward Difference,  
§   apply WLSQR stencil 

q  Extensions of original approach: 
§  strongly nonlinear equation 
§  system of equation 
§  different types of BCs 
§  general 3D formulation 

 



Local Optimization Problem  
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q  Test problem conditions:  
     M6 boundary layer flow 
 
q  Instead 1×2D we solve 2×1D 

q  For small ψ, |E|2 distribution 
becomes more narrow 

q  Strong effect on ci+2 and ci+3 

x 

(ρ, u, p) profiles |E|2 vs ci+3 |E|2 vs ci+2 



Optimal Stencil Coefficients 
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x 

Stencil coefficient at xi+1 Stencil coefficient at xi 

q  coefficients well behaved for ψ→0 at xi+1 
q  sum of cδΩ+ci well behaved for ψ→0 at xi 
q  small adjustment for ψ close to 1 

at xi+1 at xi 



Imposition of Boundary Conditions 
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q  Numerical scheme is very sensitive to extrapolation procedure of the BC 
q  Boundary conditions applied at grid line intersections 
 

q  Weighted least square method (WLSQR) 
 
 
 
 
 
 
 

§  Points are selected from candidate point  
cloud close to immersed boundary 
 

§  Substitute Robin BC for pressure  
and temperature 
§  Rank based stencil selection step (WLSQR+) 

Immersed Boundary

x*

r

irregular point
grid line intersection point
point in fluid
point in solid (dropped)



Viscous Terms 
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q  Conservative Approach 

§  Only first derivatives are applied 

§  Apply WLSQR+ to determine coefficients 
§  Viscous flux boundary condition  

q  Non-conservative approach 

§  Apply WLSQR+ to determine coefficients of higher derivatives, e.g, 

Immersed Boundary

y*

x*
y

x

and 

BC for cross-derivatives 
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Truncation Error Study 
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q  Boundary Condition Extrapolation 

§  Error increases for larger p 
§  Non-monotone behavior for minimum number of grid points (MNGP) 
§  Robustness issues for MNGP; use over-determined system (NR+NA) 
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q  Convective Terms 

x

||

0.010.020.03
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Convective Viscous 

§  Uses exact flux-BC at the wall 
§  Formal order-of-accuracy verified 
§  Monotone behavior for convective flux differentiation 

§  Non-conservative more accurate than conservative approach (not shown) 
 

Error in L∞-norm Error in L∞-norm 
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Stability Analysis (1D Spatial) 
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q  Lax-Richtmyer equivalence theorem:  
     Ensuring convergence by consistency and Lax-stability in semi-discrete form 

q  Euler equations linearized about the mean flow field (here Mach 6 BL flow) 

q  Error equation is assumed to be homogeneous 

 
q  Considering ε-pseudo eigenvalue spectrum (non-orthogonal EVs) 

q  Generalized eigenvalue problem 

q  Ensure algebraic stability of the full discretization for locally stable, one step methods 

perturbation matrix with 



Stability Analysis (1D Spatial) 
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Close-Up of ε-Pseudo Eigenvalue Spectrum  Algebraic Stability 

q  Different realizations and grids considered but not shown here 
 



Stability Analysis (+temporal) 
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q  1D stability analysis of Euler equations (with RK4) 

q  None of the other schemes is stable in the entire range 

q  Convergence towards spectral radius by Gerschgorin formula 

q  Necessary condition  ρ(A)≤1   and  sufficient condition |A|≤1+CΔt                    
 



2D Stability Analysis 2D 
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q  Unit circle immersed into 4x4 domain 

q  Vary number of grid points  
      N=20, 40, and 80 

q  Cylinder potential flow solution used            
as baseflow 

q  u∞=34.72, p∞=1 atm, T∞=300, γ=1.4, R=287 Irregular 
grid point 
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IIM LSQR 

exclude i 

stable unstable 

unstable 
unstable 

exclude i+2 
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IIM LSQR 

exclude i exclude i+2 

unstable 

stable unstable 

unstable 
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IIM LSQR 

exclude i exclude i+2 

x-momentum component of least decaying mode 

Stability Analysis 2D, Coupled Operator 
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q  Domain size: length =  80D, height = 80D 
q  Cylinder location: x0  = 25D, y0 = 40D 
q  Resolution around cylinder: Δx ≈ D/60 
q  Increased resolution in wake region to resolve shear layer instability  

Flow parameters: 
•  U∞ = 34.7 m/s 
•  p∞ = 101327 Pa 
•  ρ∞ = 1.1762 kg/m3 

•  T∞ = 300 K 

immersed boundary 



Re = 20 

Re = 40 

streamlines & vorticity 

Cylinder Flow 
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q  Steady cases: Re = 20, 40 
q  Excellent match with results from literature 

Flow parameters: 
•  U∞ = 34.7 m/s 
•  p∞ = 101327 Pa 
•  ρ∞ = 1.1762 kg/m3 

•  T∞ = 300 K 



Cylinder Flow 
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q  Unsteady cases: Re = 100, 200 
q  Excellent match with results from literature 

Re = 100 

Re = 200 

Flow parameters: 
•  U∞ = 34.7 m/s 
•  p∞ = 101327 Pa 
•  ρ∞ = 1.1762 kg/m3 

•  T∞ = 300 K 

vorticity 



Flow Around Sphere 
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q  Steady case: Re = 100  

q  Domain size: length = 20D, height = 20D, width = 20D 
 

q  Resolution around cylinder: Δx ≈ D/60 

q  Sphere location: x0 = 5D, y0 = 10D, z0 = 10D 

q  Smooth pressure contours on immersed boundary 

q  Excellent match with results from literature cp
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Flow parameters: 
•  U∞ = 34.7 m/s 
•  p∞ = 101327 Pa 
•  ρ∞ = 1.1762 kg/m3 

•  T∞ = 300 K 

Lb/D 

xc/D 

yc/D 

pressure contours 



Flow Around Sphere 
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q  Unsteady case: Re = 350 
q  Excellent match with results from literature  

Flow parameters: 
•  U∞ = 34.7 m/s 
•  p∞ = 101327 Pa 
•  ρ∞ = 1.1762 kg/m3 

•  T∞ = 300 K 

Q = 1 



Hypersonic Transition 
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q  Application of IIM: stabilization of boundary boundary 
layer disturbances through porous walls (TDNS) 

q  Physically resolving pores with IIM 
q  Good match between LST and linear DNS with IIM 

q  Temporal growth rate nearly independent of non-
dimensional boundary distance  

     (demonstrates robustness of method) 
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q  Application of IIM: stabilization of boundary boundary 
layer disturbances through porous walls (TDNS) 

q  Physically resolving pores with IIM 
q  Good match between LST and linear DNS with IIM 

q  Temporal growth rate nearly independent of non-
dimensional boundary distance  

     (demonstrates robustness of method) 

0.0 0.2 0.4 0.6 0.8 1.0
d

0.010

0.015

0.020

0.025

0.030

0.035

0.040

ω
i

np = 8, φ = 0.25, LST, Fedorov (2010)
np = 8, φ = 0.25, DNS, Wartemann et al. (2010)
np = 8, φ = 0.25, DNS, Hader & Fasel (2011)
np = 8, φ = 0.25, DNS IIM

maximum stabilization 

reference 
(smooth wall) 

destabilizaton 

Flow parameters: 
•  M = 6 
•  Reδ* = 20000 
•  T∞ = 216.65K 
•  Tw/T∞ = 7.027 

xL

yL

d

b
s

Order-of-Accuracy	





Hypersonic Transition 
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q  Application of IIM in nonlinear regime 

q  Investigation of transition delay of porous walls 

q  Breakdown to small scales successfully delayed 

q  IIM successfully employed for linear and nonlinear 
high speed transition simulations 
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smooth wall 

C. Hader, C. Brehm, H.F. Fasel 
“Numerical Investigation of Transition Delay for Various Controlled 
Breakdown Scenarios in a Mach 6 Boundary Layer Using Porous Walls” 



Flow Over Discrete Roughness 
q  2D, 180δ* × 180δ* 

q  nxb=nyb=20 
 

q  xin=15δ*	



q  Outflow buffer 
q  y+=1 
q  Half circle, R=δ 

q  Flow conditions as in 
Cherubini et al. (JFM, 2013) 

Flow Conditions: 
•  M = 0.1 
•  Reδ* = 164.57 
•  T∞ = 300 K 
•  p∞ = 101327 Pa 
•  ρ∞ = 1.1762 kg/m3 
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Flow Over Discrete Roughness 

q  3D setup is the same as in 2D 

q  ~80 × 106 grid points 

q  Immersed boundary method is employed for biglobal  
     stability analysis of discrete roughness element 
     (continuation of Brehm and Fasel, 2012,2013) 

spanwise grid point  
distribution 
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Summary  
q  Higher-order immersed boundary method for compressible Navier-Stokes 

§  Convective terms 
§  Extrapolation of pressure and temperature 
§  Viscous terms 

q  Optimization of irregular stencil coefficients with respect to numerical stability 

q  Superior stability characteristics  

q  Applied to various test problems 

 
q  Improve method for viscous high Reynolds number flows 

q  Slip wall boundary conditions 

Outlook  
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