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General nonlinear program

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, ..., Ni

hj(x) = 0, j = 1, ..., Ne

I In general, extremely difficult to solve

Convex program

Same as nonlinear program, except

– fi(x) must be convex

– hj(x) must be affine

I Very efficient to solve
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“... the great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity.”

— R. Rockafeller, SIAM Review 1993
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Geometric program: definition
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Geometric program: convex formulation
variable change: yi := log xi

I Monomials m(x) = c
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logm = b+ aTy (b = log c)
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i : convex in y after log transform

log p = log
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K∑
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ebk+aT
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)

I GP in convex form

minimize log
(∑K0

k=1 exp(b0k + aT0ky)
)

subject to log
(∑Ki

k=1 exp(bik + aTiky)
)
≤ 0, i = 1, . . . , Np

Gy + h = 0
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Geometric program: convex formulation
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Solving geometric programs

Interior-point methods

u
−3 −2 −1 0 1

−5

0

5

10

c

x* x*(10)

Figures: [Boyd 2004]

Benefits:

I Globally optimal solution, guaranteed

I Robust: no initial guesses or parameter tuning

I Off-the-shelf solvers

Boyd GP benchmarks (2005) [1]

I dense GP: 1,000 variables, 10,000 constraints:
less than 1 minute

I sparse GP: 10,000 variables, 1,000,000 constraints:
“minutes”
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Modeling warm-up: monomial examples

I Steady level flight relations

W =
1

2
ρV 2CLS, T =

1

2
ρV 2CDS, TV = hfuelṁfuelηthmηengηprop

I Non-dimensional coefficients

Re =
ρV c

µ
, M =

V√
γRT

I Sizing parameters

τ =
t

c
, λ =

ct
cr
, A =

b2

S

I Empirical power law models

Wmain
gear

= 0.011W 0.888N0.25
land L

0.4
mainN

0.321
wheel N

−0.5
ss V 0.1

stall [Raymer 2006]



Modeling example 1: Taylor expansion

Breguet range equation
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Modeling example 2: Implicit posynomial fitting

y = − log(1− ξ)
ξ
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Modeling example 3: Local function approximation

Stress limit:

σsafeSroot ≥ NliftMroot

h̄rmsw̄t̄
2
cap + Īcap ≤

1

2
w̄t̄cap

Applied root moment:

M0 ≥
W̃ b
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Modeling example 4: spanwise discretization
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Modeling example 5: Fitting models from data

∼ 10, 000 data points from

cd(CL,Re, τ)

for NACA-24xx airfoils, generated
using XFOIL [Drela 1989]

I τ ranging from 8% to 16%

I Re ranging from 106 to 107

(small homebuilt to small jet)

I CL ranging from 0 to stall
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GPkit: GP modeling in python

I substitution instead of constants

gpkit.Variable("R", 8, "meters")

I unit checking and conversions

gpkit.Variable("W", 4.94, "kilonewtons")

I interactive explorations

gpkit.interactive.widget(gp)

I sweeps over the design space

gp.sub("R", ("sweep", [4, 6, 8]))

I Experimental: optimization involving random variables

gpkit.Variable("\sigma_max", min=220, expected=276, "MPa")

http://gpkit.readthedocs.org

http://gpkit.readthedocs.org
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Constraint sensitivities

Specifications

Baseline
design

Evaluate
objective and
constraints

Is the design
optimal?

Optimal
Design

No

Yes

Change
design

Change
specifications

Exploit
convex
structure Which trade studies should we conduct?

I Dual variables quantify sensitivity of objective to each constraint.

I Primal-dual interior point algorithms determine optimal dual
variables for free.

Example The dual variable associated with constraint i is -0.27.

Interpretation If we relax constraint i by 1% and then re-solve, we
expect the optimum to improve by 0.27%.

Applications I Guide trade studies
I Direct engineering effort to most important areas
I Better understand uncertainty propagation
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Feasibility Analysis

When constraints cannot all be satisfied, GP solvers provide a mathematical certificate
that no feasible point exists.

In this case, look for closest feasible point:

Original GP

minimize p0(x)
subject to pi(x) ≤ 1, i = 1, ..., Np,

mj(x) = 1, j = 1, ..., Nm

Closest Feasible Point GP

minimize s
subject to pi(x) ≤ s, i = 1, ..., Np,

mj(x) = 1, j = 1, ..., Nm

The closest feasible point GP is always* feasible, and its optimal point is within
100(s− 1)% of satisfying the original inequality constraints.

*assuming monomial equality constraints are feasible
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Signomial programming

I Primary limitation of GP approach:
models must be log-convex

I Can handle more general models
using signomial programming

minimize p0(x)
subject to pi(x) ≤ 1, i = 1, ..., Np,

mj(x) = 1, j = 1, ..., Nm

pk(x)qk(x) ≤ 1 k = 1, ..., Ns

Sketch of sequential GP approach
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Take-aways

I Importance of mathematical structure

I Key to tractability: convexity

I Result: reliable and efficient optimization
that scales to large problems

Current research interests

I Variable transformations for quasi-convex
functions

I Signomial programming

I Fitting convex optimization models to data

convex programs

cone programs

SDP

SOCP

QP

least squares LP

GP

MILP

NLP

self-concordant
barrier known
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Constraint sensitivities

I Consider perturbed GP:

minimize
K0∑
k=1

c0kx
a0k

subject to
Ki∑
k=1

cikx
aik ≤ ui, i = 1, ...,m.

I Define p∗(u) ≡ optimal objective value of perturbed GP

∂ log p∗(u)
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Some Useful Bounds

Dual Sensitivity Analysis

I Perturb constraints (via u)

I Performance bound:

log p∗(u) ≥ log p∗(1) + λTu

I An optimistic estimate

Design Averaging

I Consider two designs θ1, θ2, with
objective values p∗1, p

∗
2

I Form geometric mean design

θ
(i)
3 =

√
θ

(i)
1 θ

(i)
2

I Performance bound:

p∗3 ≤
√
p∗1p

∗
2

I A pessimistic estimate
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Posynomial Equality Relaxation

When can we guarantee h(x) = 1
will hold at optimum ?

minimize p0(x)
subject to pi(x) ≤ 1, i = 1, ..., Np,

mj(x) = 1, j = 1, ..., Nm

h(x)≤ 1

If ∃ xk s.t.:

I xk does not appear in monomial equality constraints, i.e.
∂mj

∂xk
= 0

I p0 monotone strictly decreasing in xk, i.e. ∂p0

∂xk
< 0

I All pi monotone decreasing in xk, i.e. ∂pi

∂xk
≤ 0

I h is monotone strictly increasing in xk, i.e. ∂h
∂xk

> 0

→ Conditions satisfied for all relaxations presented today.

Extensions exist for multiple hi(x), ∂p0

∂xk
= 0 case [Boyd et. al., 2007]
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Conceptual Design – Modeling Summary

I Fuselage Pressure Loads

I Fuselage Bending Loads

I Fuselage Weight

I Steady Level Flight Relations

I Wing Moments and Stresses

I Wing Weight

I Stability

I Tail Moments and Stresses

I Tail Weight

I Engine Weight

I Turbine Cycle Analysis

I Noise

I CG Envelope

I Active Gust Response

I Wing Profile Drag

I V-speeds and critical loading cases

I Wing Induced Drag

I Tail Drag

I Fuselage Drag

I Interference Drags

I Airfoil Shape Optimization

I Laminar Flow Control

I Compressibility Effects

I Propulsive Efficiency

I Blade Element Momentum Theory

I APU Sizing

I Hydraulic, Fuel, & Electrical System
Weights

I Mission Breakdown and Fuel Burn

I Cruise Climb

I Loiter Performance/Endurance

I Takeoff Distance & 50’ obstacle

clearance

I Landing Distance

I Spoiler Sizing

I Climb Performance

I Engine-Out Operation

I Windmilling Drag

I Maneuverability

I High Lift System Sizing

I Control Surface Sizing

I Landing Gear Sizing

I Engine Ground Clearance

I Tail Strike Clearance

I Maintenance Costs

I Material Costs

I Manufacturability

I Assembly/Integration Time and Cost

I Fastener Count

I Supply Chain Dynamics
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gpkit

I Open source python modeling tool

I Interfaces with MOSEK and cvxopt solvers

I Stable version release planned for November 2014

I http://github.com/appliedopt/gpkit

http://github.com/appliedopt/gpkit


gpkit — coupling graphs
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Lagrange Dual of GP

Primal problem (in convex form):

minimize log

K0∑
k=1

exp(aT
0ky + b0k)

subject to log

Ki∑
k=1

exp(aT
iky + bik) ≤ 0, i = 1, ...,m, (1)

Lagrangian and dual function:

L(y, z,λ,ν) = log

K0∑
k=1

exp z0k +

m∑
i=1

λi log

Ki∑
k=1

exp zik +

m∑
i=0

νT
i (Aiy + bi − zi)

g(λ,ν) = inf
y,z

L(y, z,λ,ν).
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Lagrange Dual of GP

maximize
m∑
i=0

[
νT
i bi −

Ki∑
k=1

νik log
νik

1Tνi

]

subject to
m∑
i=0

νT
i Ai = 0

νi ≥ 0, i = 0, ...,m

1Tν0 = 1.

I An equality-constrained entropy maximization

I (unnormalized) probability distributions νi satisfy 1Tνi = λi
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disciplinary
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I GP-compatible models can approximate any
log-convex data [Boyd 2007]

I Given set of data points
(x1, y1), . . . , (xm, ym) ∈ Rn × R

I Minimize fitting error ||y − f(x)||, subject to f ∈ F
I Several choices for F , e.g.

I Max-affine functions
I Softmax affine functions
I Implicit posynomials

I Fitting problem solved offline using trust region
Newton methods

I Many extensions, e.g. conservative fitting, sparse
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