
Application of Improved Truncation Error 

Estimation Techniques to Adjoint Based 

Error Estimation and Grid Adaptation 

Joseph M. Derlaga 

Aerospace and Ocean Engineering Dept. 

Virginia Tech 

 
 

AMS Seminar, July 9, 2015 

 

PhD Defense, July 1, 2015 



Solutions obtained via Computational Fluid Dynamics 

(CFD) are increasingly trusted as the ‘true’ solution to 

a fluid dynamics problem, despite the solution being 

subject to a variety of modeling and numerical errors. 

• Of these numerical errors, discretization error (DE) is often 

the largest, and most difficult to properly estimate. 

• DE is caused by the need to discretize and truncate the 

governing equations of interest, and this process results in 

the so called truncation error (TE). 

• Different methods of estimating DE are available, but most 

are dependent on proper TE estimates. 

• What is the most appropriate TE estimation procedure and 

how do the DE estimation procedures compare? 

Introduction 
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• Background/Review 

– TE and DE 

– Local DE estimation procedures 

– Adjoint based functional DE estimation 

– TE estimation procedures 

• Quasi-1D Euler results 

• SENSEI CFD solver 

• 2D Euler results 

• Future work and contributions 

Outline 
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Review of TE and DE 

is the difference between the discrete equations and the 
governing equations and can be expressed using the 
Generalized Truncation Error Expression (GTEE), see Roy 
(2009) 

𝐿ℎ 𝑢 = 𝐿 𝑢 + 𝜏ℎ 𝑢  

where 𝐿ℎ 𝑢ℎ = 0 

• 𝐿ℎ(∙) is the discretized equation 

• 𝑢ℎ is the numerical solution to the discretized equation 

and 𝐿 𝑢 = 0 

• 𝐿 ∙  is the governing equation 

• 𝑢  is the exact solution to the governing equation 
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Truncation Error: 𝝉𝒉 𝒖  



Review of TE and DE 

is the difference between the exact solution to the discrete 

equations, 𝑢ℎ, and the exact solution to the governing 

equations, 𝑢  

𝜀ℎ = 𝑢ℎ − 𝑢  

If the governing equations are linear ( or linearized ), and with 

some algebraic manipulation, we can show that the GTEE 

becomes: 

𝐿 𝜀ℎ = −𝜏ℎ 𝐼ℎ
𝑞
𝑢ℎ  

5 

Discretization Error: εh 



Review of TE and DE 

is the difference between the exact solution to the discrete 

equations, 𝑢ℎ, and the exact solution to the governing 

equations, 𝑢  

𝜀ℎ = 𝑢ℎ − 𝑢  

If the governing equations are linear ( or linearized ), and with 

some algebraic manipulation, we can show that the GTEE 

becomes: 

𝐿 𝜀ℎ = −𝜏ℎ 𝐼ℎ
𝑞
𝑢ℎ  

Or discretely: 

𝐿ℎ 𝜀ℎ = 𝜏ℎ 𝑢  

Therefore, truncation error acts as the local source of 

discretization error. 
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Discretization Error: εh 



Defect Correction (DC) 

• The truncation error, or its estimate, can be used as a 

source term to drive the numerical solution towards the 

exact solution of the exact governing equations 

 

𝐿ℎ 𝑢ℎ,𝐻𝑂 = 𝜏ℎ 𝐼ℎ
𝑞
𝑢ℎ  

DE Estimation 
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Defect Correction (DC) 

• The truncation error, or its estimate, can be used as a 

source term to drive the numerical solution towards the 

exact solution of the exact governing equations 

 

𝐿ℎ 𝑢ℎ,𝐻𝑂 = 𝜏ℎ 𝐼ℎ
𝑞
𝑢ℎ  

• Pros:  

– Extremely easy to implement in any flow solver that can accept 

a source terms 

• Cons: 

– Need to solve a nonlinear system, but good initial conditions 

are generally available 

• See the works of Fox (1947), Pereyra (1967/1968), and 

Phillips (2014) 

DE Estimation 
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Error Transport Equations (ETEs) 

• Through a Taylor series expansion of the GTEE, we can 

state: 
𝜕𝐿ℎ(𝑢ℎ)

𝜕𝑢ℎ
𝜀 ℎ = −𝜏ℎ 𝐼ℎ

𝑞
𝑢ℎ + 𝑂(𝜀 ℎ

2) 

 

• This linear system allows us to directly solve for a DE 

estimate 

DE Estimation 
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Error Transport Equations (ETEs) 

• Through a Taylor series expansion of the GTEE, we can 

state: 
𝜕𝐿ℎ(𝑢ℎ)

𝜕𝑢ℎ
𝜀 ℎ = −𝜏ℎ 𝐼ℎ

𝑞
𝑢ℎ + 𝑂(𝜀 ℎ

2) 

 

• This linear system allows us to directly solve for a DE 

estimate 

• Pros:  

– Linearized problem which is easier to solve compared to DC  

• Cons: 

– Need to fully linearize the discrete operator 

• See the works of Zhang et al. (2000), Qin et al. (2002/2006), 

Cavallo et al. (2007/2008), and Phillips (2014) 

DE Estimation 
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Adjoint methods estimate DE in functional outputs 

• Unlike DC and ETEs, which locally estimates the DE, the 

adjoint method only estimates the error in a single 

functional output per adjoint/dual solve 

Adjoint Methods 
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Adjoint methods estimate DE in functional outputs 

• Unlike DC and ETEs, which locally estimates the DE, the 

adjoint method only estimates the error in a single 

functional output per adjoint/dual solve 

• Pros: 

– Linearized problem which is easier to solve compared to the 

primal problem 

– Can be used to drive adaptation and design methods 

• Cons: 

– Need to fully linearize the discrete (or continuous) operator 

– Only obtain a single DE estimate per dual solve 

Adjoint Methods 

12 



Adjoint methods seek to improve a functional estimate 

by determining its sensitivity to TE perturbations 

 

Adjoint Methods 
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Review of adjoint based error estimation 



Adjoint methods seek to improve a functional estimate 

by determining its sensitivity to TE perturbations 

– Assume we have a Taylor series expansion of the exact 

governing equation about a general function, u 

 

 

– And a Taylor series expansion of the functional of 

interest 

 

Adjoint Methods 
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Review of adjoint based error estimation 



Adjoint Methods 

We can then combine them through Lagrange multipliers 

(neglecting H.O.T.’s) : 
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Review of adjoint based error estimation 



Adjoint Methods 

We can then combine them through Lagrange multipliers 

(neglecting H.O.T.’s) : 

 

 

If we say that u is a discrete solution prolonged to a qth 

order polynomial, 𝐼ℎ
𝑞
𝑢ℎ, we have: 
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Review of adjoint based error estimation 



Adjoint Methods 

We can then combine them through Lagrange multipliers 

(neglecting H.O.T.’s) : 

 

 

If we say that u is a discrete solution prolonged to a qth 

order polynomial, 𝐼ℎ
𝑞
𝑢ℎ, we have: 

 

 

By use of the GTEE, 𝐿 𝐼ℎ
𝑞
𝑢ℎ = −𝜏ℎ 𝐼ℎ

𝑞
𝑢ℎ , we can rewrite 

the above as: 
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Review of adjoint based error estimation 



This work uses the discrete adjoint approach 

• Complex, steady-state, viscous solutions to the 

Navier-Stokes equations generally require implicit 

methods to avoid CFL restrictions  

– If the Jacobians already exist, you might as well use 

them to form the discrete adjoint 

• If a fully implicit formulation is in place, then the 

boundary condition perturbations will already be 

included 

• Ease of implementing new functionals 

– Discrete differentiation of functional can be easier than 

continuous differentiation 

Adjoint Implementation 
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• Multiple grid approaches 

– Discrete residual operates on a finer/coarser grid which 

has a reconstruction/restriction of the discrete solution 

• Venditti & Darmofal (2000/2002/2003) approach used by 

adjoint community 

• Phillips (2013/2014) extended this using a formal order of 

accuracy argument for both coarse- and fine-grid variations 

Truncation Error Estimation 
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• Multiple grid approaches 

– Discrete residual operates on a finer/coarser grid which 

has a reconstruction/restriction of the discrete solution 

• Venditti & Darmofal (2000/2002/2003) approach used by 

adjoint community 

• Phillips (2013/2014) extended this using a formal order of 

accuracy argument for both coarse- and fine-grid variations 

• Single grid approaches 

– Discrete residual approach where the solution is 

approximated through best fit approximations (Park 

2007, Park 2011) 

– Continuous residual approach where the solution is 

reconstructed and the strong (Giles & Pierce 1999/2000) 

or weak governing equations are operated upon it 

(Derlaga 2013, Phillips 2013/2014) 

Truncation Error Estimation 
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• Fine-grid method: 

𝜏ℎ 𝐼ℎ𝑢ℎ ≈ −𝐼ℎ/𝑟
ℎ 𝐿ℎ/𝑟(𝐼𝑞

ℎ/𝑟
𝐼ℎ
𝑞
𝑢ℎ)

𝑟𝑝

𝑟𝑝 − 1
 

• Coarse-grid method: 

𝜏ℎ 𝐼ℎ𝑢ℎ ≈ 𝐼𝑞
ℎ𝐼𝑟ℎ

𝑞
𝐿𝑟ℎ(𝐼ℎ

𝑟ℎ𝑢ℎ)
1

𝑟𝑝 − 1
 

• Continuous Residual method: 

 

𝜏ℎ 𝐼ℎ
𝑞
𝑢ℎ ≈ −𝐼ℎ𝐿(𝐼ℎ

𝑞
𝑢ℎ) 

Truncation Error Estimation 
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• Fine-grid method: 

𝜏ℎ 𝐼ℎ𝑢ℎ ≈ −𝐼ℎ/𝑟
ℎ 𝐿ℎ/𝑟(𝐼𝑞

ℎ/𝑟
𝐼ℎ
𝑞
𝑢ℎ)

𝑟𝑝

𝑟𝑝 − 1
 

• Coarse-grid method: 

𝜏ℎ 𝐼ℎ𝑢ℎ ≈ 𝐼𝑞
ℎ𝐼𝑟ℎ

𝑞
𝐿𝑟ℎ(𝐼ℎ

𝑟ℎ𝑢ℎ)
1

𝑟𝑝 − 1
 

• Continuous Residual method: 

 
𝜏ℎ 𝐼ℎ

𝑞
𝑢ℎ ≈ −𝐼ℎ𝐿(𝐼ℎ

𝑞
𝑢ℎ) 

• Want to satisfy conservation of the mean: 

𝑢ℎ = 𝐼𝑞
ℎ𝐼ℎ

𝑞
𝑢ℎ 

Truncation Error Estimation 
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• Background/Review 

– TE and DE 

– Local DE estimation procedures 

– Adjoint based functional DE estimation 

– TE estimation procedures 

• Quasi-1D Euler results 

• SENSEI CFD solver 

• 2D Euler results 

• Future work and contributions 

Outline 
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• Special case of 2D Euler flow for finite volume methods 

• Examine both isentropic and non-isentropic cases 

• Roe’s FDS, van Albada limiter, MUSCL with κ = 1/3 

• Functional is an integral of pressure along the domain 

Quasi-1D Euler Equations 
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                         TE Estimation Comparison 

Quasi-1D Euler Equations 
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                         TE Estimation Comparison 

Quasi-1D Euler Equations 
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                                    Isentropic Case 

Base and Remaining DE                    Truncation Error 

Quasi-1D Euler Equations 
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                                 Non-isentropic Case 

Base and Remaining DE                    Truncation Error 

               

Quasi-1D Euler Equations 
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                          Functional DE Estimation 

Quasi-1D Euler Equations 
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• Developed a new method of estimating TE using the weak 

formulation of the governing equations and 

reconstructions of the discrete solution in a mapped 

physical space 

– Demonstrated that reconstructions of the primitive variables 

were the most appropriate 

• Compared the impact of TE estimation procedures on the 

prediction of functional error 

– Flows containing shocks are difficult for the weak formulation 

to properly predict, however, a discrete residual method 

proved to be acceptable 

• Demonstrated for one test case that DC, ETEs, and the 

adjoint method perform in a similar manner for the same TE 

estimate 

– Showed that a full linearization is necessary for the ETEs 

Quasi-1D Euler Review 
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• Cell-centered, finite volume formulation using MUSCL 
extrapolation for 2nd order accuracy of inviscid fluxes and a 
Green’s theorem approximation of derivatives for the 
viscous fluxes 

• 2D/axisymmetric and 3D, multi-block, structured grids with 
point matched interfaces and ghost cells for interblock 
communication 

• Time marching via explicit M-step Runge-Kutta or implicit 
Euler method 

• OpenMP parallelized over blocks and written using modern 
Fortran 03/08 with software engineering best practices in 
mind 

 

SENSEI 
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Structured, Euler/Navier-Stokes Explicit/Implicit Solver 



SENSEI 
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          Combines the work of multiple researchers   

Joe Derlaga: 
MUSCL Primal Solver 

Primal Solver Linearization 
Adjoint Solver 

Iterative Solver Package 

Tyrone Phillips: 
HO Primal Solver 

TE Estimation 
Solution Reconstruction 

Defect Correction 

BC’s 
ETEs 

OpenMP Parallelization 
Grid/Soln Communication 

Aniruddha 
Choudhary: 

SAM 

Will Tyson: 
Integrated 
Adaptation 



• Discussed the importance of proper software engineering 

practices in and how it applies to modern engineering code 

development 

– Often ignored by engineers, following best practices from the 

software engineering world results in code which is easier to 

develop, modify, and maintain 

• Developed a new MMS technique that is vastly simpler than 

the traditional formulation 

– Tool to encourage the adoption of code verification techniques 

by reducing the implementation barrier 

• Discussed how the use of modern Fortran 03/08 greatly 

improves code quality and readability 

– Familiar Fortran, but new abstractions make for easier to 

understand code and allow for future expansion 

SENSEI Development Review 
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• Known exact solutions 

• Varying order of accuracy 

• van Leer FVS, van Albada 

limiter, MUSCL with κ = 1/3 

• DE in force functionals 

• Qualitative DE comparisons 

using ‘kexact’ and ‘fgc’ 

methods 

• Adaptation driven by TE 

and adjoint weighted TE 

weight functions using SAM 

SENSEI Test Cases 
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Supersonic Vortex Flow 
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Smooth turn of supersonic flow with OOA = 2 

 

   Pressure Distribution 



                  Base and Remaining Functional DE 

                   Lift                                             Drag 

Supersonic Vortex Flow 
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Supersonic Vortex Flow 
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Exact DE 

‘kexact’ 

‘fgc’ 

DC ETEs Approx. ETEs 

             Qualitative Comparison of DE in Pressure 



Expansion Fan 
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Supersonic expansion around corner, OOA = 1 

                                                       Base and Remaining DE 

      Mach Distribution   in Force Normal to Plate 



Expansion Fan 
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Exact DE 

‘kexact’ 

‘fgc’ 

DC ETEs Approx. ETEs 

             Qualitative Comparison of DE in Pressure 



Shocked Flow 
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Supersonic compression, OOA = 1 

                                                        Base and Remaining DE 

       Mach Distribution                   in Force Normal to Plate 



Shocked Flow 
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Exact DE 

‘kexact’ 

‘fgc’ 

ETEs Approx. ETEs DC 

             Qualitative Comparison of DE in Pressure 



• Demonstrated that DC, ETEs, and the adjoint method 

produce comparable results for the same TE estimate 

– Reinforced that a full linearization is necessary for the ETEs if 

they are to be competitive with the adjoint method 

– Gave guidelines for which error estimation procedure is the 

most appropriate to implement 

• Indicated that non-smoothness of mesh metrics on 

adapted meshes may be the largest contributor to 

poor TE estimates and therefore poor DE estimates 

 

2D Euler Review 

42 



• Compared DC, ETEs, and adjoint methods for the first time 

in the literature and showed that each method performs in a 

comparable manner for the same TE estimate  

– If only DE estimates are needed, then DC makes the most 

sense to implement, but if computational speed is important, 

the ETEs make the most sense, but carry the caveat of 

increased development costs 

• The DC method costs about 40% of the computational time of the 

primal solve whereas the ETEs may only need 10%-25% of the 

primal solve computational time 

– But, if adaptation is important, then the adjoint method may 

need to be implemented, at a comparable development and 

solution cost to the ETEs 

 

Contributions 
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• Demonstrated that reconstructions of the primitive 

variables were appropriate for TE estimation 

• Developed a new CFD solver incorporating software 

engineering best practices 

– Integrated a new MMS procedure, iterative solver package, and 

enabled error estimation comparisons 

Contributions 
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• Re-examine the behavior of TE near domain and interblock 

boundaries 

– Hybrid schemes may be the most appropriate near domain 

boundaries 

• Consider solution reconstructions in physical space in 

order to remove grid metrics entirely 

– May be more applicable to unstructured meshes 

• Examine the use of improved adaptation procedures 

– Could potentially fix grid metric issues that hamper the TE 

estimation on adapted meshes 

• Examine the use of the entropy adjoint in grid adaptation 

• Extend the ETEs to multi-block domains 

• Complete 3D, multi-block Navier-Stokes development 

Future Work 
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Questions? 
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Backup 
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  SVF Lift Adjoint                             SVF Drag Adjoint 



Backup 
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     Expansion Fan Adjoint                       Shock Adjoint 



Backup 
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            SVF ‘kexact’ Estimated TE in Continuity Equation 



Backup 
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                                       SENSEI Stencils 

            Euler Equations                             Laminar NS 



 

 TE Adapted Mesh         Comparison of Mach Distributions 

                                       

Expansion Fan 
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Expansion Fan 
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                                                             Comparison of Effect of 

   Functional DE Estimate on              Polynomial Degree on  

         TE Adapted Mesh                         Adjoint DE Estimate 



Shocked Flow 
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       Adjoint and TE Adapted Meshes              Mach Contour 



Shocked Flow 
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                                                             Comparison of Effect of 

   Functional DE Estimate on              Polynomial Degree on  

         TE Adapted Mesh                         Adjoint DE Estimate 


