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Finding 3 of the CFD Vision 2030 Study*

Mesh generation and adaptivity continue to be significant bottlenecks in
the CFD workflow, and very little government investment has been
targeted in these areas.

Slotnick et al. CFD Vision 2030 Study: A Path to Revolutionary Computational
Aerosciences NASA CR-2014-218178

25-Aug-2016 2/32

Mike.Park (@NASA.gov) Grid Adaptation for CFD Vision 2030



Outline

© Impacts of Grid Adaptation
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Impacts of Mature Grid Adaptation Technology

Accurate solutions with error estimates on smaller meshes

@ Reduce time required for initial grid generation

@ Asymptotic convergence rates for AIAA Prediction Workshop Series
@ Verify numerical methods and increase confidence

@ Set the stage for rigorous validation and certification by analysis

v

Eliminate discretization error as a concern

Construction of aerodynamic databases

Development and adoption of improved modeling techniques

Uncertainty quantification and design optimization

Multidisciplinary analysis
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Outline

© Status of Unstructured Methods
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Status: Grid Adaptation Mechanics

Primary focus on unstructured tetrahedral methods
@ High Reynolds number turbulent flows with discontinuities

@ Arbitrary alignment and aspect ratio for complex flow simulations

@ Lack of grid regularity in high gradient regions degrade solver and
error estimation performance
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Status: Grid Adaptation Mechanics

Structured and Cartesian subdivision

@ More mature for schemes that permit hanging nodes
@ Alignment is limited by topology and potentially difficult to generate
@ Viscous Cartesian adaptation uses alternative boundary layer methods

@ Collaboration opportunities for other aspects of grid adaptation
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Status: Grid Adaptation Mechanics

Semistructured prism stacks and tetrahedral grids
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Semistructured prism stacks and tetrahedral grids
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Status: Grid Adaptation Mechanics

Tetrahedral elements orthogonal to spacing request
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Status: Error Estimation

Central to the implementation of any solution-adaptive scheme is the
ability to detect and assess solution error. The construction of a suitable
refinement criterion represents the weakest point of most adaptive
strategies.?

Available methods

@ Output based adaptation is used where the adjoint is available and a
functional can be targeted (adjoint weighted residual)

o Entropy adjoint

@ Interpolation error estimates are used in other cases, but ignore the
transport of errors impacting the solution

o Feature-based methods are popular, but lack guarantees that features
are in correct location or functionals are improved

@ Complicated by multiple solutions, hysteresis, and chaotic flows

V.

2Mavriplis, Unstructured Grid Techniques, Annual Review of Fluid Mechanics, 1997
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Status: Error Estimation

Anisotropy

@ Optimized metric based on surrogate error-cost models
@ Continuous mesh model and metric approach

@ Orientation in the next higher solution derivative direction, aspect
ratio evaluated in orthogonal plane

Hessian for second-order methods

Metric regularity aids grid mechanics

xM =
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Status: Geometry

Geometry for grid adaptation

@ Parallel and client-server access available but infrequently used

@ Surrogate or implicit representations for parallel access and small gaps

@ Adaptation places more stringent needs on geometry than a fixed-grid
approach

Trim Curves

e L M
Geom Surface 2 /

Geometry Definition Coarse mesh Adapted Mesh
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Status: Higher Order Boundaries

Curved Meshes

@ Required for many high-order schemes

Displacement of linearly generated and adapted grids

°
@ Few examples of directly adapting curved grid

@ May increase geometry requirements (e.g., surface normal)
°

High-order methods may allow larger elements
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@ Fifteen Year Forecast
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Forecast: HPC

Architecture shift underway

@ Traditional gains in single core performance no longer available

Sequential and per core speed stagnate and forecast to drop

°
e Parallel and hybrid decomposition of application work and memory
@ Concurrency requirements will accelerate

°

A given implementation may execute slower on new hardware without
software investment
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Forecast: HPC
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3Strohmaier et al., The TOP500 List and Progress in High-Performance Computing,
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Mike.Park (@NASA.gov) Grid Adaptation for CFD Vision 2030 25-Aug-2016 18 /

/



Forecast: HPC
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In Five Years: 2020

Forecast

@ Error estimation and metric construction mature for CFD

@ Orthogonality of adaptive grid elements improves
@ Research includes 2D and 3D methods

v

Recommendations

@ Improve solver automation to impact all disciplines

@ Evaluate mesh and geometry databases (e.g., MOAB, PUMI), which
include linkages to CAD and CAD surrogates

@ Improve error estimation for CFD

@ Improve anisotropic initial grid generation and adaptation

@ Sequential algorithms become parallel
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In Ten Years: 2025

Forecast

@ Reliable error estimation extensions will include other disciplines,
coupling terms, and turbulent eddy resolving methods

@ Design optimization and uncertainty quantification based on adapted
grid solutions with comparable or superior efficiency to fixed grids

@ Accurate Common Research Model (DPW) solution with reliable
error estimate verified by asymptotic convergence rate demonstration

@ Customers will require the option of adaptive methods and error
estimates from vendors easing the initial grid generation task

v

Recommendations

@ Robustness also be incorporated into higher levels of the system

@ Shift in emphasis from pre-deployment testing to monitoring the
application in production due to high complexity and throughput

@ All research in parallel, application includes heterogeneous hardware

v
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In Ten Years: 2025

System Level Robustness

o Completely testing all aspects of the integrated CFD process during
development will no longer be possible

@ Shift to monitoring the application in production and statistically
evaluating failures
@ Intentionally failing components in production to harden system
(Netflix Chaos Monkey)
o Failure to evaluate a CAD geometry query
o Rebooting a server
o Network failures
e Flow solver divergence
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In Fifteen Years: 2030

Forecast

@ Adaptive grid computations displace fixed grids as the default
@ Practitioner will rarely visualize the grid directly
@ Verification databases provide high confidence in discrete solutions

@ Modeling, coupling, and manufacturing errors will be quantified,
controlled, and balanced to increase design robustness

@ Error estimation and adaptation is a clear competitive advantage

Recommendations

@ Embrace adaptive execution and fault tolerance on heterogeneous and
throttling architectures

@ Define standards for analysis certification and certification by analysis
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© Technology Diffusion
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Grid Adaptation Technology Diffusion Strategy

In industry, CFD has no value of its own. The only way CFD can deliver
value is for it to affect the product. To affect the product, it must become
an integral part of the engineering process for the design, manufacture,
and support of the product.®

%Johnson, Tinoco, and Yu, Thirty Years of Development and Application of CFD at

Boeing Commercial Airplanes, Seattle, Computers and Fluids, 2005
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Grid Adaptation Technology Diffusion Strategy

Phases of the CFD development process.” &
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"Johnson, Tinoco, and Yu, Thirty Years of Development and Application of CFD at
Boeing Commercial Airplanes, Seattle, Computers and Fluids, 2005
8National Research Council, Current Capabilities and Future Directions in

Computational Fluid Dynamics, NASA CR-179946, 1986
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Grid Adaptation Technology Diffusion Strategy

Phases in the technology diffusion process’

Innovation Market Market stabilization
phase adaptation phase
phase
Percent
of First market introduction
adoption
1
T = 0 (invention) Time (in years) —
V.

°Ortt and Schoormans, The Pattern of Development and Diffusion of Breakthrough
Communication Technologies, European Journal of Innovation Management, 2004
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Grid Adaptation Technology Diffusion Strategy

It is important to establish the position of the technology in the pattern of
development and diffusion and that strategies should be tailored to this

position.10
Innovation Market Market stabilization
phase adaptation phase
phase ________________
Percent
of First market introduction
adoption
I
T = 0 (invention) Time (in years) —

90rtt and Schoormans, The Pattern of Development and Diffusion of Breakthrough
Communication Technologies, European Journal of Innovation Management, 2004
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Grid Adaptation Technology Diffusion Strategy

The choice being made is not a choice between adopting and not adopting
but a choice between adopting now or deferring the decision until later.!

Adoption should not take place the instant that benefits equal costs, but
should be delayed until benefits are somewhat above costs.!?

Take-off is caused by outward shifting supply and demand curves.'?

[Number of grid adaptation implementations is a more important factor
than the efficiency of a particular implementation to trigger rapid
adoption.]

1Hall and Khan, Adoption of New Technology, National Bureau of Economic
Research, Working Paper 9730, 2003

12 Agarwal and Bayus, The Market Evolution and Sales Takeoff of Product
Innovations, Management Science, 2002
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@ Summary and Conclusions
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Summary and Conclusions

Summary

@ Impact, status, and roadmap synergies with the CFD Vision 2030

@ Recommended investments are provided for fifteen year forecast

v
Conclusions

@ HPC trends in single core performance stagnate, go heterogeneous

@ Many items are dependent on other disciplines
@ Adoption is critical to impacting production workflows (success)

@ Robust participation of government, university, industry, and
commercial vendor researchers is potentially the best way forward

In AIAA Paper 2016-3323

@ Detailed description of unstructured grid methods

@ Partial bibliography of the previous fifteen years to support the
forecast
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