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The Parallel Research Kernels, a tool for 
parallel systems investigations - Part II 
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Evangelos Georganas 

*Parallel system=hardware system+network stack+OS+parallel 
programming environment  (ProgEnv: programming model + API 
+ compiler + runtime) 

ADVANCED MODELING AND SIMULATION SEMINAR SERIES 



•  Background/Motivation 

•  Particle-In-Cell kernel 

•  Adaptive Mesh Refinement kernel 
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Agenda 



Parallel Research Kernels (PRK)  
 

Create test suite to study behavior or parallel systems 
§  Cover broad range of patterns found in real parallel applications 

§  Provide paper-and-pencil specification and generic reference 
implementations 

§  Ensure each kernel does some real work  

§  Keep kernels simple functionally 
- Easy porting to new runtimes/languages 
- Easy to understand by different domain scientists 
- Dominated by single feature, so convenient performance building block 

§  Parameterize kernels (problem size, iterations, # cores etc.) 

§  Include automatic verification test (analytical solution) 

§  Make sure kernels can be load balanced (enough concurrency) 
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Motivation to add kernels 
§ Initially PRK intended as architectural stress tests, not to 
compare runtimes 
- No insight into platform by studying fundamentally unbalanced load 
- Our solution: make kernels trivially statically load balanced 

§ However, exascale will require dynamic load balancing for 
mature workloads + system/network fluctuations 
- Balance load: ensure workers reach synchronization points at same time 
- Balance work: assign same amount of computational work to workers 

§ GOAL: Design and implement new kernels that: 
- Require dynamic load balancing at all system scales (algorithmic source) 
- Allow control of amount and frequency of workload adaptation 
- Have data dependencies, so load-balancing is non-trivial; improving load-

balance usually increases communication  

§ Usage: Research vehicle to stress dynamic load-balancing 
capabilities of parallel runtimes 
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Algorithmic sources of dynamic 
load imbalance 
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Type I: Evolving mismatch between two (often 
distributed) data structures 
§  Size of data structures constant 
§  Dependency between data structures 
§  No efficient static decomposition  
Type II: Work changes intermittently (dis/appears) 
§  Size of data structures changes 
§  New work depends on subset of existing data structure 
§  Equal distribution of new work among existing 

resources breaks locality + decreases granularity 



Type I: Simple Particle-In-Cell (PIC) 
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§  2D regular mesh with periodic boundaries 

§  Fixed charges at mesh points. No assumptions 
regarding charge distribution  

§  N particles, each with its own charge. No 
assumptions regarding particle distribution  

§  T discrete time steps of duration dt 

§  No interactions among moving particles 

§  Particles only interact with four charges at  
corners of containing cell 

§  Compute total Coulomb force Ftotal on particle, 
corresponding to acceleration a: a= Ftotal/m 

§  Given velocity v, position x, and acceleration a of a 
particle at time t, compute v and x at time t+dt: 

§  x ← x + v dt + ½ a dt2 

§  v ← v + a dt 
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Initialization 
§ Alternate charges: Columns with even index have charge +q, columns 

with odd index have charge –q 

§  Put particles on horizontal axis of symmetry of cells 
§ Given the relative position xi of particle i, assign charge qi:      

qi = h / (q (cosθ/d1
2 + cosφ/d2

2)) 

§ At time t+1 particle has shifted one cell, force reversed direction 
§ At time t+2 particle has shifted two cells, velocity and force identical to 

those at time t 
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Verification requirements/challenges: 
1.  Simple and short: don’t take more time or memory than actual 

experiment.  
2.  Tight enough to catch even minor implementation errors, but not 

too tight (no bitwise accuracy) 
3.  Not relying on statistics (inaccurate for short/small experiments) 

Actual verification 
§ Given initial coordinates (x0 , y0) and velocity (0, z*h), final 
coordinates after T steps (modulo grid size) given by: 
o xT = x0 + h T 
o yT = y0 + z h T 

§ Assign unique id to each particle. Checksums of particle ids 
at and end of simulation must match. 

§ Verification test catches even a single miscalculated force or 
misplaced particle 

Verification 
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§ Nonuniform initial particle distribution makes simulation 
unbalanced; no static decomposition is efficient 

§ Uneven particle cloud moves through domain, requiring 
rebalancing 
- Frequency of needed rebalancing controlled by cloud speed 
 

Load imbalance 
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§ Example initial particle 
distribution: 
o Column i of grid cells contains p(i) 
particles, where p(i) = A * ri 

o Varying r makes distribution 
arbitrarily unbalanced 

o r =1 recovers uniform distribution 



Example of 1D diffusion scheme 
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push push pull push pull pull push pull 



Example of 1D diffusion scheme 
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Runtime-based load balancing with 
Adaptive MPI (AMPI) 

§ AMPI: Multiple ranks (user-level threads) per process, 
typically one process per physical processor 

§ AMPI uses Charm++ scheduler for execution of ranks 
§ Approach: Over-decompose domain. AMPI migrates ranks 
across processors for load balancing 

§ Minimal changes to original static MPI implementation 
(serialization routines for dynamic data structures) 
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Figure 4: Smaller subdomains may fit into cache and result in better performance

such as rocket simulation, burning solid fuel, sub-scaling for a certain part of the mesh, crack propagation,
particle flows all contribute to load imbalance. Centralized load balancing strategy built into an application
is impractical since each individual module is developed mostly independently by various developers. In
addition, embedding a load balancing strategy in the code complicates it, and programming e↵ort increases
significantly. The runtime system is uniquely positioned to deal with load imbalance. Figure 5 shows the
runtime system migrating a VP after detecting load imbalance. This domain may correspond to a weather
forecast model where there is a storm cell in the top-left quadrant, which requires more computation to
simulate. AMPI will then migrate VP 13 to balance the division of work across processors and improve
performance. Note that incorporating this sort of load balancing inside the application code may take a lot
of e↵ort and complicate the code.

Figure 5: AMPI migrates VPs across processors for load balancing

There are many di↵erent load balancing strategies built into Charm++ that can be selected by an
AMPI application developer. Among those, some may fit better for a particular application depending on
its characteristics. Moreover, one can write a new load balancer, best suited for an application, by the
simple API provided inside Charm++ infrastructure. Our approach is based on actual measurement of load
information at runtime, and on migrating computations from heavily loaded to lightly loaded processors.

For this approach to be e↵ective, we need the computation to be split into pieces many more in number
than available processors. This allows us to flexibly map and re-map these computational pieces to available
processors. This approach is usually called “multi-domain decomposition”.

Charm++, which we use as a runtime system layer for the work described here, simplifies our approach.
It embeds an elaborate performance tracing mechanism, a suite of plug-in load balancing strategies, in-
frastructure for defining and migrating computational load, and is interoperable with other programming
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Migration of rank 13 

Source: AMPI tutorial 
Melania Trump 



Example with Adaptive MPI 
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§ Over-decompose domain to 16 ranks (on 4 processes) 



Example with Adaptive MPI 
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§ Load balancer decides how to place/migrate ranks to processes 

P0 P1 P2 P3 



Example with Adaptive MPI 
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P0 P1 P2 P3 

§ Load balancer decides how to place/migrate ranks to processes 



- 48 cores: 12K2 grid, 400K particles, 6K time steps; r= 0.999 
- Increase number of cores and number of particles proportionally 
- Load balancers: ampi: greedy, mpi-2d-LB: diffusion, mpi-2d: none 

Distributed memory “weak” scaling 
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Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. 
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, 
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other 
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance 
of that product when combined with other products. 
For more complete information visit http://www.intel.com/performance 
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ampi:  
•  over-decomposition = 4 
•  frequency = 1/500, 1/250 

mpi-2d-LB: 
•  quantum = 16 columns 
•  frequency = 1/4 



Why Adaptive Mesh Refinement? 
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Limitations of PIC kernel  (Type I dynamic load imbalance) 

§ Total amount of work constant; often work comes and goes in 
chunks: in situ visualization, AMR, computational steering, etc. 

§ Source of load imbalance is constant; no abrupt and/or 
unpredictable variations in load  

§ No analytical solution for almost all mesh sizes, initial particle 
placements, time steps, particle and grid charges 
§  relies on infinite precision or cancelling of rounding errors 
§  can become chaotic   

 

Fix: derive new kernel from Stencil PRK and AMR 
workloads (Type II) 
§ Has intermittent, abrupt introduction/removal of chunks of work 

§ Final solution continuous function of initial solution 
 



Stencil kernel, BG 
with refinement grid 
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Stencil S(R) 

R=2 Out += S(R) In 

BG = Background Grid 
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Stencil S(R) 

R=2 Out += S(R) In 

Refinement issues: 
•  How to ensure simple 

analytical solution? 
•  How should BG and 

refinement interact? 
•  How to avoid spending 

much time/effort on 
interpolation? 

•  How to avoid complicated 
path computation/bdry 
intersection? 

•  How to preserve 
refinement history? 

•  How to vary amount/
extent of refinement? 

•  How to vary frequency/
duration of refinement? 

BG = Background Grid 

Stencil kernel, BG 
with refinement grid 
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Stencil S(R) 

R=2 Out += S(R) In 

Refinement scenario: 
•  Align BG and refinements 
•  Interpolate initial values 

on refinements from BG 
•  Keep refinements in 

place, but (de)activate 
cyclically 

•  Save state of all 
refinements 

•  Make refinements mesh 
size power-of-two of BG 

•  Define refinements in 
terms of BG cells 

•  Define refinements 
period/duration in terms 
of BG time steps 

•  Prescribe # iterations on 
refinements per BG 
iteration 

BG = Background Grid 

g0 

g1 g2 

g3 

Stencil kernel, BG 
with refinement grids 



Reference implementations 
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§ Application level dynamic load balancing (usually MPI) 
o Possible to distribute work of new refinement without global 

repartitioning? 

§ Runtime orchestrated dynamic load balancing (e.g. 
AMPI)  
o Employs static partitioning with over-decomposition 



MPI (dynamic) load balancing; 
dumb and dumber—and dumbest 
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FINE_GRAIN: partition BG and refinements completely among all ranks 

§  Split BG evenly among all ranks  

§  When refinement appears, split evenly among all ranks 

NO_TALK: minimize communication 

§  Split BG evenly among all ranks 

§  When refinement appears, split into pieces coinciding with BG partitioning and 
assign to same rank 

HIGH_WATER: partition BG plus one refinement together statically 

§  Each rank receives exactly one subset of one of the grids at a time 

NO_TALK_MULTI: same as NO_TALK, but over-decomposed 

HIGH_WATER_MULTI: same as HIGH_WATER, but over-decomposed 

 

NO_TALK_CORNER_CASE: shrink BG partitions towards refinement 

AMNESIA: repartition each configuration from scratch (all-to-all) 

S
tatic decom

position 

Dynamic decomposition 



FINE_GRAIN  
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•  Static decomposition 
•  Perfect load balance 
•  Good if BG work ≤ 

work on refinements, 
may become very 
fine-grain otherwise 

•  Poor inter-grid-level 
locality 

 Color = rank  



NO_TALK  
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•  Static decomposition 
•  Perfect inter-grid-

level glocality 
•  Perfect load balance 

between refinements 
•  Very poor load 

balance during 
refinements if work 
on refinements 
substantial 

•  Fine if work on 
refinements very 
small 

 Color = rank  



HIGH_WATER 
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•  Static decomposition 
•  Perfect load balance 

during refinement 
•  Better granularity 

than FINE_GRAIN 
•  Very poor load 

balance between 
refinements, 
especially if BG work 
≤ refinement work 

•  No inter-grid-level 
locality 

 Color = rank  



NO_TALK_MULTI 
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•  Perfect inter-grid-
level locality 

•  Perfect load balance 
between refinements 

•  Poor load balance 
during refinements if 
work on refinements 
substantial 

•  Finer-grained than 
NO_TALK 

 Color = worker  



HIGH_WATER_MULTI 
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•  Static decomposition 
•  Possibility for decent 

locality (depends on 
assignment quality) 

•  Poor load balance 
during refinements 

•  Perfect load balance 
between refinements 

•  Finer-grained than 
HIGH_WATER 

 Color = worker  



NO_TALK_CORNER_CASE  
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•  Dynamic 
decomposition 

•  Perfect inter-grid-
level locality 

•  Perfect load balance 
between refinements 

 Color = rank  



NO_TALK_CORNER_CASE  
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•  Dynamic 
decomposition 

•  Perfect inter-grid-
level locality 

•  Perfect load balance 
between refinements 

•  Better load balance 
during refinements 
than NO_TALK 

•  More communication 
to repartition BG 

 Color = rank  



NO_TALK_CORNER_CASE  
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 Color = rank  

•  Dynamic 
decomposition 

•  Perfect inter-grid-
level locality 

•  Perfect load balance 
between refinements 

•  Better load balance 
during refinements 
than NO_TALK 

•  More communication 
to repartition BG 



NO_TALK_CORNER_CASE  
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 Color = rank  

•  Dynamic 
decomposition 

•  Perfect inter-grid-
level locality 

•  Perfect load balance 
between refinements 

•  Better load balance 
during refinements 
than NO_TALK 

•  More communication 
to repartition BG 



NO_TALK_CORNER_CASE  
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 Color = rank  

•  Dynamic 
decomposition 

•  Perfect inter-grid-
level locality 

•  Perfect load balance 
between refinements 

•  Better load balance 
during refinements 
than NO_TALK 

•  More communication 
to repartition BG 



Conclusions 
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§ PIC  
o Useful for comparing user-level and runtime-orchestrated dynamic load 

balancing of constant-work applications 

§ AMR  
o Tough case to parallelize using runtime-orchestrated dynamic load 

balancing 
o Is based on static partitioning with over-decomposition 
o When over-decomposition mitigates dynamic load imbalance, static 

mapping suffices 

§ Overall 
o AMR better proxy for localized system noise 
o Does not benefit from runtime-orchestrated dynamic load balancing 
Ø Local work increase cannot be absorbed locally unless workload already 

unbalanced before disturbance 
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Backup 
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§ Strong scaling experiment on Edison:  
- 2,999 x 2,999 grid, 600,000 particles (r = 0.999) and 6,000 time steps 

Multiple nodes experiments 
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Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. 
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, 
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other 
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance 
of that product when combined with other products. 
For more complete information visit http://www.intel.com/performance 
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AMR Specification details 
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Parameters 
§ T : total number of iterations (background grid) 
§ R: radius of difference stencil 
§ n: linear dimension of square background grid (n2 points, mesh 

spacing is unity) 
§  r: refinement level (mesh size of refined grid is 2−r) 
§ k: linear dimension of refinement in terms of BG cells ((k∗2r +1)2 

points in each refinement) 
§ P : duration in terms of iterations on the BG of one full cycle of 

activation of one refinement until that of the next (period) 
§ D: duration in terms of iterations on the BG of activity on each 

refinement; D ≤ P 
§ d: number of iterations on a refinement per iteration on the BG 



AMR Specification details 
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(Re-)initialization 
§  In[0](x,y) = cxx+cyy 
§  Ini[t]= φ (In[t]), with φ bi-linear interpolation (exact for linear 

field) 
Update 
§  Increase In and Ini by constant after each stencil application 
Verification 
§  S is numerical equivalent of ∇ (exact for linear field): 

∇(cxx+cyy + const) = cx+cy 

§  Count number of iterations ηi on gi → Outi[T](x,y) ≡ ηi*(cx+cy) 
§  Out[T](x,y) = T*(cx+cy) 
§  In[t](x,y) = cxx+cyy + t, so: In[T](x,y) = (cx+cy)(n-1)/2 + T 
§  Count number of updates νi on gi since last interpolation at time 

θi→ Ini[T](x,y) ≡  (cx+cy)*k/2 + νi + f(corneri) + θi 

corneri = coordinates of bottom left corner point of gi 



Three example AMR scenarios 

39 

1.  n=1000, 10 workers, r=1, k=100, P=3, D=1, d=1. 
Refinement has 1% of work of BG, lasts 1 iteration, then 
waits for 2 iterations until next refinement. OK to add 
refinement work to worker covering same part of BG (~10% 
load imbalance)  

2.  n=1000, 100 workers, r=1, k=100, P=3, D=1, d=1. Not OK 
to add refinement work to worker covering same part of BG 
(100% load imbalance). Rapid (dis)appearance requires 
frequent load balancing 

3.  n=1000, 100 workers, r=4, k=6, P=30, D = 10, d = 5. 
Refinements ≈number of grid points as in scenario 1, but 
cover much smaller fraction of the BG; activated 10x slower 
than in that case, persist 50x longer, so automatic load 
balancing may respond effectively to changes in load 
 


