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The Vlasov-Poisson Equations
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• The Vlasov-Poisson equations describe the evolution of a charged, 

collisionless fluid in phase space. 

• The electric field is obtained by solving Poisson’s equation. 

• Applicable as a simplified model to plasma physics (space plasmas, 

accelerator modeling, controlled fusion) and to cosmology.
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Eulerian Methods
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• Nonlinear advection equation in a high-dimensional space, can be 

solved by Eulerian techniques. 

• Advantages: 

– Strong body of theory on finite volume methods 

– Do not suffer from “noise” 

– High order methods exist (Vogman + 2014)  

• Disadvantages: 

– High cost of grids in high-dimensional (4D, 5D, or 6D) spaces



• Discretize system with set of Lagrangian interpolating points,

• Reduces problem to system of ODEs for particle trajectories:
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Particle Methods

• Can reconstruct distribution at later times from 

vp

Ep

x p(t)
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Particle Methods
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• Variety of methods - mainly differ in how the force is computed 

• PIC methods, in which the force solve is performed on an intermediate 

grid, are particularly popular. 

• Advantages: 

– Mathematically simpler. Reduces a PDE to a set of coupled 

ODEs.   

– Naturally adaptive - the particles go where more resolution is 

needed. 

– Usually lower computational cost
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Disadvantages of Particle Methods
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• Less 

mathematical 

guidance 

• Particle noise 

prevents 

convergence 

• Usually limited 

to 2nd order 

accuracy

Wang+2011
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The goal of this talk
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• Describe a particle method (PIC) that attempts to address these 

downsides. 

• Show how to all the PIC stages at 4th-order 

– Heart of this is really the interpolation kernels. 

• Describe a high-order remapping procedure to ameliorate particle 

noise while maintaining 4th order accuracy
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• Field solve: force is computed on the mesh by e.g. 

solving Poisson’s Equation w/ 2nd order finite 

differences. 

• Interpolation: Force is interpolated back to particle 

positions using same kernel. 

• Particle Push: Particle positions and velocities are 

updated. 2nd-order leapfrog. 

• Deposition: Particle charges are deposited onto mesh: 
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Overview of a Particle-in-Cell time step

2nd order: Piecewise linear, Cloud-in-Cell interpolation

Start

Deposition

Field Solve

Interpolation

Particle Push



• Given solution at a set of points, 

reconstruct in between 

• Functions W(x) need to be even, 

normalized, have compact support

⇢(x) ⇡
X

j

W

✓
xj � x

�x

◆
⇢j

⇢0
⇢1

x0 x1 ...

...

A high-order accurate Particle-In-Cell method 
for Vlasov-Poisson problems over long time 

High-order in space (interpolation kernels)
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High-order in space (interpolation kernels)
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• Commonly taken to be one of the B-spline functions. Limited to 2nd Order. 

NGP CIC TSC



• Error analysis involves looking at the Fourier transform of          ,  

• Can show that                 must have a zero of order n at           AND           must 

have  zeros of order n at                        to be O(n). 

• For the Basis spline of order n,   

• Fulfills the second requirement, but zero at k = 0 is only order 2. 

• Hence, all the basis splines interpolate with at best 2nd order accuracy 

• They do, however, have increasing degrees of smoothness which may be 

desirable when the particles are highly disordered.  

• See Schoenberg 1975, Monaghan 1985 for more details. 
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W (x)

W̃ (k)
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High-order in space (interpolation kernels)
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• However, it is possible to design a polynomial with the appropriate zeros in 

Fourier space and transform back into real space to obtain a             with the 

desired properties. 

• For details, see Lo, Minden, and Colella 2016.  
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• 4-point stencil 

• Reproduces cubic 

functions exactly 

• Continuous with 

discontinuous first 

derivative 

High-order in space (interpolation kernels)
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High-order in space (field solve)

• Replace 2nd-order finite difference approximation with 4th-order, centered 

differences:

r2� = �⇢

• Resulting system can be solved with a variety of methods (we used 

geometric multigrid). 

E = �r�
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High-order in time (RK4)

1 The Method

The goal is to solve the following system of equations for the particle posi-

tions and velocities x and v given the force F :

ẋ = v

v̇ = F (t, x). (1)

The standard, fourth-order Runge-Kutta method applied to this system

gives, for the special case of a force that does not depend on v:
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Note the sequential nature of this algorithm; k1 must be computed before

k2, which must be computed before k3. An alternative is to extrapolate the

forces from the previous time step. For example, the forces at the stages
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1

• Replace leapfrog with 4th-Order Runge-Kutta method 

• Requires 3 force solves per time step (velocity independent force), instead of 1 

• Self-starting. Gives up on symplectic property.  
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Particle Remapping

• In PIC convergence theory, stability error for field contains 

exponential term:

• Periodically restart problem with new particles 

with interpolated weights

(Wang+2011)

Before remap After remap

Particles with tiny 

masses are discarded
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Particle Remapping
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• One order of accuracy is 

lost during the remap step 

• High-order deposition 

• 6-point, 6th-order stencil 



q⇤
p

=
X

p

q
p

W 6

✓
x

i

� x

p

h
x

◆
W 6

✓
v

j

� v

p

h
v

◆

21

Particle Remapping

• Particles are laid on at the cell centers of a (possibly AMR) Cartesian 

grid in phase space. The new weights are then computed as:

• Particles with small weights are discarded. 

• Can be applied every few time steps, or just a few times per calculation 

• Can be thought of as Semi-Lagrangian 

• Compare the Forward Semi-Lagrangian technique (Crouseilles+2008)
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Particle Remapping

• Higher order interpolation functions 

are not positivity preserving

• Can show that the 2nd moment of the 

interpolating function must vanish for 

the kernel to have better than 2nd 

order accuracy.

Positivity not guaranteed
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Particle Remapping

• Higher order interpolation functions 

are not positivity preserving

• Use a redistribution procedure to 

maintain positivity of the distribution 

function

Positivity not guaranteed
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• 2 or 3 iterations is usually sufficient

neighboring cells
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Particle Remapping AMR example

• Example distribution 

function from a remapping 

stage, using 4 AMR levels 

• Cosmological dark matter 

test problem (Myers+2015)



Remapping on Cosmology Calculation
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Remapped Not remapped

http://adsabs.harvard.edu/abs/2016ApJ...816...56M
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• Chombo - A set of tools for numerically solving PDEs 
• Especially useful for AMR applications 
• Mixture of C++ and FORTRAN 
• Uses a Box-based, SPMD approach to parallelism 
• Provides distributed data containers, including (in the next release) 

for particle data 
• Our method was implemented using these tools, running NERSC’s 

Edison machine + my laptop. 
• Code, tests, and analysis scripts are all here: 

A high-order accurate Particle-In-Cell method 
for Vlasov-Poisson problems over long time 
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Implementation

https://bitbucket.org/atmyers/4thorderpic
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Linear Landau Damping

• Exponentially damped oscillation of a space charge wave 
• Wave-particle interactions cause the electric field wave to lose 

energy to the particles, damping its amplitude 
• Very commonly used test problem for PIC codes 

– Analytic solution for the decay rate 
– Long-time evolution is challenging for classical PIC methods

30



• Gaussian velocity 
distribution 

• Small (linear) perturbation 
to the charge density 
(physical space) 

• Track the electric field as a 
function of time
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Linear Landau Damping (initial conditions)
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k = 0.5

↵ = 0.01
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Linear Landau Damping (movie)
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Linear Landau Damping (results)
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• Black shows simulation 
result, red shows damping 
rate expected from linear 
theory. 

• Remapping is needed to 
track the analytical damping 
rate for late times. 

• Recurrence effect seen in all 
simulations past t = 80, a 
consequence of finite cell 
spacing in the velocity 
dimension   



• All discrete elements of the problem, including     , reduced by factor 
of 2. 

• Ratio of             remains fixed. �x/h

x
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Convergence studies for PIC simulations

�t



• We then use Richardson extrapolation to compute the error. 
• The error in the electric field is then defined as: 

eh = |Eh �E2h|

q = log2
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◆
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Convergence studies for PIC simulations

• And the order is computed as: 
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Linear Landau Damping (convergence results)
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Linear Landau Damping (results)
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Remapping every 5 
steps gives the best 
results, but even 
every 100 helps
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Nonlinear Landau Damping (initial conditions)
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k = 0.5
↵ = 0.5
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Nonlinear Landau Damping (movie)
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Nonlinear Landau Damping (results)
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Nonlinear Landau Damping (convergence)
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Nonlinear Landau Damping (Phase Diagrams)
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• Initial distribution function corresponds to two particle streams 
with opposing velocities:
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Two-Stream Instability
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↵ = 0.01
k = 0.5

“Inverse” of Landau Damping
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Two-Stream Instability
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Two-Stream Instability
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Two-Stream Instability
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Remapping 10 times (out of ~1000) 
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Two-Stream Instability (convergence results)
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Two-Stream Instability
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http://yt-project.org/
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Summary and Future Research

• High-order method is more accurate in regions where the flow is 
smooth 

• Not more necessarily more accurate for thin or unresolved phase-
space features in the nonlinear regime.  

• Remapping is necessary to control particle noise over long time 
evolutions 

• Involves some degree of retreat from pure Lagrangian. AMR 
helps to an extent.Trade-offs need to be explored. 

• Future research involves performing the remap selectively rather 
than globally.  

• Coupled with high-order Maxwell solver for electromagnetic PIC 
(Sven Chilton)
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