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Introduction

Supersonic Combustion Ramjets (scramjets) are a potentially
efficient propulsion system for access to space, but many challenges
remain which motivate using simulation-based design.
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X-43A Artist’s Conception. Image credit: NASA
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Scramjet Design Process

Low fidelity initial design included the full flow path, and
provides sizing and parameters such as a compression ratio.1

Simulation-based design and detailed analysis of isolated
components.2,3,4

Components incrementally tested and combined.5

1M. Smart (2012). “How Much Compression Should a Scramjet Inlet Do?” In: AIAA Journal 50.3, pp. 610–619.

2R. Gollan and P. Ferlemann (2011). “Investigation of REST-class Hypersonic Inlet Designs”. In:

17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference.

3C. Tarn and R. Baurle (2001). “Inviscid CFD Analysis of Streamline Traced Hypersonic Inlets at Off-Design Conditions”. In:

39th Aerospace Sciences Meeting and Exhibit, Reno, NV.

4W. Huang et al. (2011). “Flow-field analysis of a typical hydrogen-fueled dual-mode scramjet combustor”. In:

Journal of Aerospace Engineering 25.3, pp. 336–346.

5K. Jackson, M. Gruber, and S. Buccellato (2011). “HIFiRE Flight 2 Overview and Status Update 2011”. In:

17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, pp. 2011–2202.
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Challenges

Mach 7 wind tunnel test of the full-scale X-43A model in NASA Langley’s 8-Foot High Temperature Tunnel.
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Challenges

Low-fidelity analysis of the full flowpath provides limited detail.

High fidelity simulations of isolated components neglect
flowpath performance.

Many interacting and competing factors influence performance.

Gradient-based optimization is a useful tool, but the more
efficient methods of calculating gradients do not provide all the
relevant performance metrics.

Mach 7 wind tunnel test of the full-scale X-43A model in NASA Langley’s 8-Foot High Temperature Tunnel.
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Contributions

A new generalized adjoint functional which facilitates flexible
outflow-based functionals, including those that use external
models. .
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Contributions

A new generalized adjoint functional which facilitates flexible
outflow-based functionals, including those that use external
models.→ enables multi-fidelity integrated flowpath design.

A multi-objective adjoint implemented by using superposition
of boundary conditions.→ addresses competing objectives.

These methods have been implemented and utilized for
multi-objective and multi-fidelity shape optimization of a
hypersonic inlet.

Results show large performance changes for small geometry
modifications, and interesting relationships between competing
objectives.
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Hypersonic Effects

A collection of phenomena become
more significant above ≈ Mach 5:

Thin shock layers, entropy layers,
viscous interaction become more
significant with increased Mach and
temperature.

As temperature increases,
real gas effects (T � 800◦K),
chemical reactions (T � 2, 000◦K),
ionized flow (T � 9, 000◦K), and
radiative heat flux (T � 10, 000◦K)
become significant.

Above ≈ 92 km rarefied gas effects
become significant.

Mach 7 flow through a scramjet
at 30km

Changing specific heats included
in 1D flow model of combus-
tor/nozzle.
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Design Quantities of Interest

Total pressure ratio: Ptr =
Pt3

Pt0

Surface heat flux:
�
S
−k∇T · �nds
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Design Quantities of Interest

Total pressure ratio: Ptr =
Pt3

Pt0

Surface heat flux:
�
S
−k∇T · �nds

Thrust: Fun = ṁ0c0M0

�
(1 + f )M10

M0

�
T10

T0
− 1

�
+ A10

A0

�
P10

P0
− 1

�

Specific installed thrust: Fun−Dest

ṁ

Total temperature ratio (relates to unstart): τ = Tte

Tt0

Combustor maximum pressure (relates to structural limits): Pmax.
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Optimization

Non-Linear Program:

minimize J(�x)
with respect to �x ∈ Rn

subject to ĉj(�x) = 0, j = 1, ..., m̂
ck(�x) ≥ 0, k = 1, ...,m

Optimization algorithms have been
developed by (Powell 1978), (Wilson
1963), (Boggs and Tolle 1995) and
others. The SNOPT(Gill, Murray, and
Saunders 2006) algorithm is used in this
work.

CFD

Flow Soln

Adjoint

∂J
∂S

Project
∂J
∂S onto �x

∂J
∂�x J

Evaluate J(�x) & c(�x)

Evaluate ∂J
∂�x & ∂c

∂�x

Optimized?

Change Design
Deform Geometry

Pick search
direction

Fixed Design

BaselineSpecifications

yes

no
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The Continuous Adjoint Method

Cost ≈ function, independent
to # design variables.

Derive new PDE for new
functionals.

Sensitivity of one objective at
a time.

Limited to integral functions
defined within the CFD
volume.
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The Continuous Adjoint Method: Literature Review

Optimal control of PDE systems by (Lions 1971) and
(Pironneau 1984).

Developed for aerodynamic optimization by (Jameson 1988).

(Giles and Pierce 1997) and others provide the adjoint
formulation for many objective functions defined on solid walls;
(Hayashi, Ceze, and Volpe 2012) made developments in
characteristic-based boundary conditions. (Arian and Salas
1999) studied admissible objectives on solid wall boundaries

(Castro et al. 2007) developed the continuous adjoint for
unstructured grids using a surface formulation.

Previously available objectives on outflow boundaries limited to
functions of pressure or total pressure provided by
(Papadimitriou and Giannakoglou 2007), and functions of
velocity in incompressible flow such as (Othmer 2008).
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The Adjoint Method

A.k.a.: Lagrange multipliers, co-state problem, or dual problem.
J: Function of interest. R : Governing equations.
U: State variables (ex: conservative variables).
S : Design variables/independent variables (ex: surface shape).

J(U, S)
δJ

δS
=?

R(U, S) = 0
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The Continuous Adjoint for Fluid Flow

R(U) = 0 represents the Euler equations, and the RANS form is
included in the thesis.

U =





ρ
ρ�v
ρE



 ,Ψ =





ψρ

�ϕ
ψρE



 ,V =





ρ
�v
P





min
S

J =

�

Γe

j(U)ds

subject to: R(U) = 0,
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Continuous Adjoint Method Derivation

Expanding the Lagrangian: δJ = δJ −
�
Ω
ΨT δR(U)dΩ, with the

assumption that Γe is undeformed:
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Combining the terms above:
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Continuous Adjoint Method Derivation

Expanding the Lagrangian: δJ = δJ −
�
Ω
ΨT δR(U)dΩ, with the

assumption that Γe is undeformed:

δJ =

�

δΓe

j(U)ds +

�

Γe

∂j

∂U
δUds =

✟✟✟✟✟
�

Γ�
e

j(U)ds −
✟✟✟✟✟
�

Γe

j(U)ds +

�

Γe

∂j

∂U
δUds =

�

Γe

∂j

∂U
δUds

Applying the divergence theorem to the second term:
�

Ω

ΨT δR(U)dΩ =

�

Γ

ΨT �A · �nδUds +
�

S

ΨT �A · �nδUds +

�

S

ΨT �A · �nδSds −
�

Ω

∇ΨT �AδUdΩ

Combining the terms above:

δJ =

�

Γe

∂j

∂U
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∇ΨT · �AδUdΩ

Terms that lead to surface sensitivity
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Terms that lead to the adjoint governing equation
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ΨT �A · �nδUds +
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ΨT �A · �nδSds −
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Combining the terms above:

δJ =
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Γe

∂j

∂U
δUds −
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Γ

ΨT �A · �nδUds −
�

S

ΨT �A · �nδUds

−
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S

ΨT �A · �nUδSds +
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Ω

∇ΨT · �AδUdΩ

Remaining terms are similiar to (Castro et al. 2007); terms are
simplified using differential geometry, integration by parts, and the
linearized form of the direct problem boundary conditions.



Background &
Literature Review

Methodology

Results

Conclusions &
Future Work

Publications

References

17/36

Generalized Outflow Boundary Conditions

We need to make ∂j
∂U δU −ΨT �A · �nδU independent of δU.
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Generalized Outflow Boundary Conditions

We need to make ∂j
∂V δV −ΨT �A · �nMδV independent of δV . When

expanded, this equation is:





∂j
∂ρ
∂j
∂�v
∂j
∂P





T 



δρ
δ�v
δP



−





ψρvn + �v · �ϕvn + ψρEvn
�
�v2

2

�

ρ(�v · �ϕ)�n + ρvn�ϕ+ ρψρ�n + ψρE

�
ρvn�v + ρ( c2

γ−1 + γ �v2

2 )�n
�

�ϕ · �n + ψρE (vn
γ

γ−1 )





T 



δρ
δ�v
δP




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

δρ
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



When flow is subsonic and a constant pressure condition is used,
δP = 0. In order to eliminate dependence on the remaining δρ and
δ�v :

�
ψρ

�ϕ

�
= ψρE

�
2c2+�v2(γ−1)

2(γ−1)

−�n c2

vn(γ−1) − �v

�
+





−
�

∂j
∂�v · �v 1

ρvn

�
+

�
∂j
∂ρ

2
vn

�
�

∂j
∂�v

1
ρvn

− �n ∂j
∂ρ

1
v2
n

�



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When the flow is supersonic, the dependence on δP is eliminated
through:

ψρE ,M>1 =
γ−1
v2
n−c2

�
∂j
∂ρ

1
vn

+ ∂j
∂P vn −

∂j
∂�v · �n 1

ρ

�
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Multi-Fidelity Flowpath

CFD

Flow Soln

Adjoint

∂J
∂S

Project
∂J
∂S onto �x

∂J
∂�x J

Evaluate J(�x) & c(�x)

Evaluate ∂J
∂�x & ∂c

∂�x

Optimized?

Change Design
Deform Geometry

Pick search
direction

Fixed Design

BaselineSpecifications

yes

no
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Multi-Fidelity Flowpath

CFD

Flow Soln

Adjoint

∂J
∂S

Project
∂J
∂S onto �x

∂J
∂�x J

Optimized?

Change Design
Deform Geometry

Pick search
direction

Fixed Design

BaselineSpecifications

yes

no

Mach 7 flow through 2D scramjet inlet.
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Multi-Fidelity Flowpath

CFD

Flow Soln

Adjoint

∂J
∂S

Project
∂J
∂S onto �x

∂J
∂�x

External
Function

∂j
∂V

J

Optimized?

Change Design
Deform Geometry

Pick search
direction

Fixed Design

BaselineSpecifications

yes

no

Example output from combustion model & expansion model. Conditions
match initial geometry and Mach 7 flow.
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One-Dimensionalization Methods

Any method of one-dimensionalization will necessarily lose some
information about the flow. Multiple methods exist, each of which
have pros and cons.

J = f (V̄ )

δJ =
∂J

∂V̄

�

Γ

∂V̄

∂V
δVds

∂j

∂V
=

∂J

∂V̄

∂V̄

∂V

Area-Averaging

V̄ =





�
ρds�
vnds�
Pds





1

Ae

∂V̄

∂V
=

1

Ae





1, 0, 0
�0, �n, �0
0, 0, 1




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δJ =
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∂V̄

�

Γ

∂V̄

∂V
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∂j
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=

∂J

∂V̄

∂V̄

∂V

Mass-Flux Averaging

V̄ =



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�
ρ(ρvn)ds/ṁ���
v2
n (ρvn)ds/ṁ

�
�
P(ρvn)ds/ṁ





∂V̄

∂V
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



vn (2ρ− ρ̄),
vn(v2

n−v̄2)
2v̄ , vn

�
P − P̄

�

ρ�n (ρ− ρ̄),
ρ(vn�v+|�v |2�n−v̄2�n)

2v̄ , ρ�n
�
P − P̄

�

0, 0, ρvn





1

ṁ
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Verification of Implemented Methods

Verification test case: scaled specific installed thrust, evaluated using
values at the outflow boundary of a ramp in Mach 6 flow. Results
shown are for area averaged method.

J =
Fun − Dest

2000ṁ

Test geometry and variables.

Variable

G
ra

d
ie

n
t 

o
f 

E
x

te
rn

a
l 
F

u
n

c
ti

o
n

0 1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

Continuous Adjoint

Finite Difference

Gradient of specific installed thrust computed in an external script.
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Multi-Objective Adjoint Implementation

Multi-objective adjoint evaluation can be obtained by utilizing the
principle of superposition for linear PDEs:

δ(w1J1 + w2J2) = w1δJ1 + w2δJ2.

Re-uses existing functionals, requiring care with scaling factors.
Also possible to evaluate the sensitivity of constraints defined as
a penalty function of existing functionals via the chain rule.

δ (J1 + f (J2)) = δJ1 +
∂f
∂J2

δJ2.
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Multi-Objective Adjoint Implementation

Multi-objective adjoint evaluation can be obtained by utilizing the
principle of superposition for linear PDEs:

δ(w1J1 + w2J2) = w1δJ1 + w2δJ2.

Re-uses existing functionals, requiring care with scaling factors.
Also possible to evaluate the sensitivity of constraints defined as
a penalty function of existing functionals via the chain rule.

δ (J1 + f (J2)) = δJ1 +
∂f
∂J2

δJ2.

Var.
∂(CD×105+P̄t×10−5)

∂xi
(simultaneous)

∂CD

∂xi
× 105 + P̄t

∂xi
× 10−5

(separate)

0 -1.50232998E+2 -1.50232998E+2
1 -9.40390906E+1 -9.40390906E+1
2 -4.40948556E+1 -4.40948556E+1
3 -1.58777572E+1 -1.58777572E+1
4 -4.30593276E+0 -4.30593276E+0
5 -7.47768208E-1 -7.47768208E-1
6 8.61790879E-2 8.61790874E-2
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Generalizations of the Continuous Adjoint Method

Derived & implemented the adjoint for a generalized
outflow-based functional, and implemented multi-fidelity
flowpath to provide partial derivative values.

J =

�

Γe

j(V )ds, V =
�
ρ, �vT , P

�T

�
ψρ

�ϕ

�
= ψρE

�
2c2+�v2(γ−1)

2(γ−1)

−�n c2

vn(γ−1) − �v

�
+





−
�

∂j
∂�v · �v 1

ρvn

�
+

�
∂j
∂ρ

2
vn

�
�

∂j
∂�v

1
ρvn

− �n ∂j
∂ρ

1
v2
n

�




ψρE ,M>1 =
γ−1
v2
n−c2

�
∂j
∂ρ

1
vn

+ ∂j
∂P vn −

∂j
∂�v · �n 1

ρ

�

Multi-objective adjoint evaluation utilizing the principle of
superposition for linear PDEs & re-utilizing existing boundary
conditions.

Implemented in the open-source simulation suite SU21.

1T. Economon et al. (2016). “SU2 : An Open-Source Suite for Multiphysics Simulation and Design”. In: AIAA Journal 54.3,

pp. 828–846.
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Initial Point Design

Initial geometry: Rectangular-to-Elliptical-Shape-Transition (REST)
inlet1 in Mach 7 flow with dynamic pressure of 82 kPa, Re of 6×106.

1P. G. Ferlemann and R. J. Gollan (2010). “Parametric Geometry, Structured Grid Generation, and Initial Design Study for

REST-Class Hypersonic Inlets”. In:
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Initial Point Design

Initial geometry: Rectangular-to-Elliptical-Shape-Transition (REST)
inlet1 in Mach 7 flow with dynamic pressure of 82 kPa, Re of 6×106.

Shape design variables are
Free-Form-Deformation (FFD)
points.

1P. G. Ferlemann and R. J. Gollan (2010). “Parametric Geometry, Structured Grid Generation, and Initial Design Study for

REST-Class Hypersonic Inlets”. In:
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Initial 2D Optimization Problem

Symmetry plane of the same 3-dimensional
Rectangular-to-Elliptical-Shape-Transition (REST) inlet1.

Non-Linear Program (NLP):

min
x

J(�x)

subject to: �xl ≤ �x ≤ �xu,

cj(�x) < 0

J = −Pt3

(total pressure)

J = − Fun−Dest
ṁ

(specific installed thrust)
.

J = − Fun−Dest
ṁ

+102 (max (τe − τlim, 0.0))
2

(“ with total temperature penalty)

J = − Fun−Dest
ṁ

+102
�
max

�
τe−τlim

τlim
, 0.0

��4

+105
�
max

�
Pmax−Plim

Plim
, 0.0

��4

(“ with max pressure penalty)

1P. G. Ferlemann and R. J. Gollan (2010). “Parametric Geometry, Structured Grid Generation, and Initial Design Study for

REST-Class Hypersonic Inlets”. In:
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Symmetry plane of the same 3-dimensional
Rectangular-to-Elliptical-Shape-Transition (REST) inlet1.
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min
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REST-Class Hypersonic Inlets”. In:
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Sensitivity Comparisons

Surface sensitivity on the ramp and cowl surfaces for a 2D simulation of
the symmetry plane. Sensitivities are scaled by the integrated norm of the
sensitivity.
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2D Optimization Results
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ṁ

+102
�
max

�
τe−τlim

τlim
, 0.0

��4

+105
�
max

�
Pmax−Plim

Plim
, 0.0

��4

(“ with max pressure penalty)

+0.45% -10.00% -0.92% +0.10% -0.94%



Background &
Literature Review

Methodology

Results

Conclusions &
Future Work

Publications

References

27/36

2D Optimization Results

Objective Function Pt3
Fun−Dest
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3D Optimization Problem Statement

Non-Linear Program for the 3D case:

min
x

J(�x) = −Fun − Dest

ṁ
subject to: �xl ≤ �x ≤ �xu,

IHF ≤ IHFlim

Pmax ≤ Plim

τe ≤ τlim

IHF =
�
−k∇Tds is

the Integrated Heat
Flux over the wetted
surfaces included in
the CFD volume.
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3D Optimization Problem Statement

Non-Linear Program for the 3D case:

min
x

J �(�x) = −Fun − Dest

ṁ

+ 10−5 (max(IHF − IHFlim, 0.0))
2

+ 10−5 (max(Pmax − Plim, 0.0))
2

+ 105 (max(τe − τlim, 0.0))
2

IHF =
�
−k∇Tds is

the Integrated Heat
Flux over the wetted
surfaces included in
the CFD volume.
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Three-Dimensional Optimization Results

Major Optimizer Iterations
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Change in performance metrics

J� Fun−Dest
ṁ Pt3 ṁ IHF − IHFlim τe Pmax

−17.9% +4.10% −0.194% +0.206% −33.9% −2E − 3% +0.11%
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Three-Dimensional Optimization Results

XY

Z

Deformation Magnitude [mm]
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A new generalized functional adjoint was derived &
implemented, which facilitates flexible outflow-based
functionals, including those that use external models.
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Contributions

A new generalized functional adjoint was derived &
implemented, which facilitates flexible outflow-based
functionals, including those that use external models.

Multi-objective adjoint implemented by using superposition of
boundary conditions.

These methods have been implemented in SU2, and utilized for
multi-objective and multi-fidelity shape optimization of a
hypersonic inlet.

These methods provide access to surface sensitivity for more
realistic & relevant functionals, for applications including
optimization, error estimation, uncertainty quantification, and
mesh refinement.
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Conclusions & Future Work

Conclusions

Performance of the inlet is extremely sensitive to small shape
deformations.

Sensitivity plots show correlation between several metrics near
the nose, while those metrics have opposing sensitivity within
the isolator.

Optimizing using these methods produces significant
improvement in and successfully balances performance metrics.

Potential Further Applications & Extensions

Application to alternate design problems.

Generalized objectives on additional boundary types.

Further studies with more detailed models of the combustor and
nozzle.
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Additional optimization studies omitted from presentation: Pareto fronts of heat flux vs
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