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Xoen@E get when you go
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Boundary layer concept

Fluid flows around object
(freestream)

y
A

U

OO

— T -

1 1

Note: Arrows
| are indicative of
flow velocity

Molecules stick to surface
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Boundary layer concept ZAS

Fluid flows around object
(freestream)

U
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Molecules stick to surface

Molecules above surface are slowed
down due to collisions with molecules

sticking to surface
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Boundary layer concept

Fluid flows around object
(freestream)

/A

Further out fewer collisions are

affected by surface
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Molecules stick to surface
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Molecules above surface are slowed
down due to collisions with molecules

sticking to surface
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Boundary layer concept ZAS

This creates a thin layer near the object called the boundary layer
Note: this schematic is not drawn to scale
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Boundary layer concept ZAS

* What is the boundary layer scale

(how thick 1s 1t)? 0.002 ——
0.2m. 3,
0.3 m, §,,

0.00085 m
0.00104 m
0.00113 m

o

oo
i

* Depends on the flow conditions

* Example: M =6, Re, = 10.82e6 1/m

~0.001
* 859 = 0(0.001 m) /
5 |

Can we relate that to a scale we can
grasp”?

0.000 '
0.0 0.
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Boundary layer concept ZAS

0.002 ‘
————— x=0.1m, §,~0.00085 m
x = 0.2 m, §,,~ 0.00104 m
x =0.3m, §,~0.00113 m
=0.001
0.000 ' J
0.0 0.5 1.0
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Boundary layer concept A

0.002 ‘
———— x=0.1m,§,~0.00085 m
x =0.2 m, §,/~ 0.00104 m
x=0.3m, §,/~0.00113 m
~0.001
0.000 ' J
0.0 0.5 1.0
uw/U
o

Lego Batman 1s about 48 times as tall
as the boundary layer 1n our case
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What is laminar-turbulent transition? ZAS

e Laminar flow: “smooth”, “ordered” tflow

e Turbulent flow: “chaotic” flow, random fluctuations

. P
A _- E | '
ri’ ] O O I . Turbulent
— o — region
> > Q) >
1 > 1 ! —p
- B - . - i \j > } Buffer layer
7 T R .
I . - = : Viscous
' aw > : : = sublayer
Not to Scale
<———— Laminar ><- Transition —< Turbulent
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Why hypersonic transition?

* Transition leads to significant increases in skin-friction and heat loads
* Prediction of transition necessary for safe design and operation

%’
X-43:

* Test flights
reaching M = 7
(4600 mph) and M
~ 9.5 (6600 mph)

X-51:
* Test flights reaching
M =5 (3300 mph)

HTV-2:
W * Planned to fly at M
=20

d* Unsuccessful tests

= || HIFIRE v
: * Ongoing project to | S
test hypersonic ot | AT
technology 1 f "orion

* ReachedM = 6-8 |-
(4500-6100 mph)

5/11/17
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Why cones? A

* Forebodies of hypersonic vehicles are more or less wedges or cones with
circular or elliptical cross section

J/ 830
P 7 <
_ . ~_

Can

~ Orion

Transition Section
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What is a flared cone? A

* Experimental test sections are limited in size

* Transition region in high speed flows can be very long

* Move transition region upstream (accelerate transition) by applying flare

upstream -——s downstream

straight  curved (compression ramp)

Z

5/11/17 AMS Seminar



Paths to Transition A

Increasing disturbance level

Forcing environmental disturbances Not to scale

' U

Freestram turbulence entering
the Boundary Layer

Receptivity ;nechanisms m 5BL
b
(a] Transient growth ‘/*/
lo U,
: 0 10 |06 & T
Eigenmode growth \
Parametric instabilities Bypass - . N P
and mode interactions mechanisms Receptivity Eigenmode Parametric instabilities, Breakdown Turbulence
0 ¥ mechanisms  growth mode interactions
Breakdown
Turbulence
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Paths to Transition

A

Increasing disturbance level

: Forcing environmental disturbances \ NOt to Scale
\Z 7 /WW"M Freestram turbulence entering [
Receptivity mechanisms m the Boundary Layer SBL -
¥ _—— i
(a] Transient growth
'0 u, (4
o |0 |0

| Eigenmode growth

\/ \
Parametric instabilities Bypass — X . e
and mode interactions mechanisms Receptivity  Eigenmode Parametric instabilities,
0 5 mechanisms  growth mode interactions
Breakdown
Turbulence

We will be focusing on path a (excluding receptivity)

\

Breakdown Turbulence

'\
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Paths to Transition A

Increasing disturbance level

Not to scale

- Forcing environmental disturbances ’

7 \/ .; /WWW"M Freestram turbulence entering [
\_ Receptivity mechanisms ‘_ m the Boundary Layer g -
(a] | Transient growth |
10 u, [f
[ ] o 0 (O
| Eigenmode growth
P tric instabiliti B
I a?,[fmﬁc;fi',?tifac'ﬁ'o'ﬁ: mechﬁ?:ms Receptivity = Eigenmode Parargetric instabilities, ‘Breakdown Turbulence
7 \ 5 /~ mechanisms growth mode Mgteractions
Breakdown We need a disturbance wave in the boundary
\J , layer to transition the flow
Turbulence

We will be focusing on path a (excluding receptivity)

5/11/17 AMS Seminar



What do we actually do? ZAS

| Computational Flujd Dynamics (CFD) |

e DS
Postprocessiig

* Lots of variety and different flavors

* Which methods are best suited depends on the problem you are solving

5/11/17 AMS Seminar



What do we actually do?

Computational Fluid Dynamics (CFD)

1

/A

O/l@‘

* Lots of variety and different flavors

* Which methods are best suited depends on the problem you are solving

SA/17

AMS Seminar



What do we actually do? ZAS

DNS = Direct Numerical Simulations

* Numerical solution of the compressible Navier-Stokes Equations

Geometry

5/11/17 AMS Seminar



What do we actually do? ZAS

DNS = Direct Numerical Simulations

* Numerical solution of the compressible Navier-Stokes Equations

Geometry I >| Grid

5/11/17 AMS Seminar



What do we actually do? ZAS

| DNS = Direct Numerical Simulations |

* Numerical solution of the compressible Navier-Stokes Equations

| Geometry I >| Grid I >| Simulation |

X

z

5/11/17 AMS Seminar



What do we actually do?

ions

lat

imu

ical S

t Numer

irec

=D

DNS

ier-Stokes Equations

f the compressible Nav

10N O

Numerical soluti

lation |

1mu

{ s

Gri

g

| Geometry

AMS Seminar
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What do we actually do?

ions

lat

imu

ical S

t Numer

irec

=D

DNS

-Stokes Equations

1CT

* Numerical solution of the compressible Nav

>| Simulation |

i

Gr

g

| Geometry I

Basically we crunch a lot of numbers and then try to do science

AMS Seminar
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Motivation/Goals of this research ZAS

* Hot streaks observed in both simulation and experiment (similar patterns)

* Investigate underlying physical mechanisms responsible for steak pattern

* Why do streaks appear, disappear and reappear?

‘hot’ streaks (large local heat fluxes) may compromise structural integrity
of hypersonic flight vehicle

-

Heat Transfer [kW/n?]

i

45
Distance from nosetip [cm]

- : Experiment
CFD (U of A, J. Sivasubramanian) (Purdue, BAM6QT, B. Chynoweth)

5/11/17 AMS Seminar




Outline A

Geometry, Conditions and Simulation Strategy
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Flared Cone Geometry ZA&

* Same flared cone geometry as used for the most recent experiments in the
Boeing/AFOSR Mach 6 Quiet Tunnel (BAM6QT) at Purdue

Parameter Value
Nose radius, 7,0se | 0.0001016 m
y Initial half angle, © 1.4° X
! Cone flare, rgare 3 m
Cone length, Lcone 0.51 m

. mating location

xyz: cartesian coordinate system
sr@: body coordinate system

5/11/17 AMS Seminar



Flow Conditions A

* Conditions of the most recent experiments in the BAM6QT

0.004 FV. p, = 140 psi. T, = 420 K
Parameter Value I OV e
Do 140 psi
T, 420 K
Re; 10.82-10° 1/m H

u
0.004 ‘ ‘ :
FV, p, = 140 psi, T, = 420 K
----A---- FD, p, =140 psi, T)=420K
------- STABL”
0.003

profiles
=0.257 m

~ 0.002 Hf

0.001 <

By

0.000 L L L L L L
50 100 150 200 250 300 350

5/11/17 AMS Seminar



Simulation Strategy: Step 1/3 A

Beseflaw Camer gnce p Finite Volume = FV
(Finite Volume Caode) —
0.060 ==
convergence ? 0.055 et
0.050 =
0.045 ——
= 0.040 =
0.035
0.030
es => initial condition for high order co 0.025 -/
Y & 0.020 H(x=0,y=0)

Base flow Convergencewith high order cade .
(Finite Difference Cade)

convergence ?

no

1

. No-slip, isothermal
Slip wall

Subdoimain: initial condition
for FD code

yes => initial condition for stability simulations

Transition Simulation
(Finite Difference Cade)

* Nose of the cone included in the computational domain
* Lower order scheme (numerically more stable but less accurate)

5/11/17 AMS Seminar



Simulation Strategy: Step 2/3

A

Finite Difference = FD

no

yes => initial condition for stability simulations

Base flow Convergence P P
(Finite Volume Cade) 0.060
convergence ? 0.055
0.050
0.045
1o 0.040
0.035
0.030
yes => initial condition for high order code L 88%8
Base flow Convergencewith high order code » Dirichlet B
(Finite Difference Code)
| |
convergence ?
Dirichlet —

Outflow

b
cone

No-slip, isothermal

X

Transition Simulation
(Finite Difference Cade)

* Nose not included

* Higher order scheme (more accurate, numerically more “expensive’)

5/11/17 AMS Seminar



Simulation Strategy: Step 3/3

A

Base flow Convergence
(Finite Volume Caode)

convergence ?

¢

no

yes => initial condition for high order code

Base flow Convergencewith high order cade
(Finite Difference Cade)

convergence ?

yes => initial cgmlition for stability simulation1

I Finite Difference = FD

Buffer

Dirichlet/ Time
dependent
inflow

P
.
-

N

Trandtion Simulation
(Finite Difference Code)

5/11/17

AMS Seminar



Simulation Strategy: Step 3/3 A

Base flow Convergence
(Finite Volume Caode)

convergence ?

« I Finite Difference = FD

no

yes => initial condition for high order code

Base flow Convergencewith high order cade
(Finite Difference Cade)

convergence ?

Pi—

yes => initial conditién for stability simulations

Trandtion Simulation
(Finite Difference Code)

Note: We only simulate a small “wedge” of the cone
Define domain wave number: K 4.0 = 20/@ 40 main

5/11/17 AMS Seminar



Where do the disturbances come from?

Increasing disturbance level

Forcing environmental disturbances

“reestram turbulence entering

he Boundary Layer

\J
Receptivity mechanisms
(a] Transient growth
l © (c I (d
Eigenmode growth
\A \
Parametric instabilities Bypass
and mode interactions mechanisms
\ \
Breakdown
Turbulence

Receptivity
mechanisms

Eigenmode

A

Not to scale

Recall: Omitting environmental disturbances and the receptivity mechanisms.
How do disturbances get into the Boundary Layer in the simulations?

5/11/17

AMS Seminar

\

Parametric instabilities, Breakdown Turbulence
mode interactions




Where do the disturbances come from? ZAS

Increasing disturbance level

P . | Not to scale
Artificially introduce . . |
. reestram turbulence entering
disturbances m /VNIMMM the Boundary Layer 5
BL
(a] Transient growth 4/
~ —
Eigenmode growth ‘ \
\ \ |
:ﬁ?mﬁggciﬂitﬂ;gﬁﬁ meEK'zﬁ?:ms Receptivity Eigenmodg Parametric instabilities, Breakdown Turbulence
0 ¥ mechanisms  growth mode interactions
Breakdown We force (“seed”) them artificially in the boundary
\/ layer
Turbul - - -
Eh— =We use 2 different strategies to do this
Strategy 1: Continuous forcing Strategy 2: Pulse forcing

5/11/17
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Strategy 1: Continuous forcing ZAS

* Disturbances are forced at all times (continuously)

* A “controlled” set of frequencies is introduced

0.05 0.10 0.15 0.20

Dirichlet/ Time
dependent
inflow

0.0000 0.0001 0.0002

'-‘
.-
-

0.0000 0.000 1 0.0002

0.0000 0.060 1 0.0002

5/11/17 AMS Seminar



Strategy 2: Pulse forcing

* Disturbances are forced for a short duration

* A wide range of frequencies is introduced

" Buffer

Dirichlet/ Time
dependent
inflow

-

———
.-
-

Forcing hole

0.10 O.)%S 0.20 0.25

0.0001 t 0.0002 0.0603

0.0001 ; 0.0002 0.0003

0.0001 . 0.0002 0.0003

5/11/17 AMS Seminar



Continuous vs. Pulse forcing

L5y

continuous

N AN AWANANAY
< sh o\ VooV VY
I AVARAVIEAV AR AV VARV,

-1.5 ' '
0.0E+00 5.0E-06 1 .01%—05 1.5E-05 2.0E-05
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Continuous vs. Pulse forcing ZAS

L5y

continuous

N AN AWANANAY
< sh o\ VooV VY
I AVARAVIEAV AR AV VARV,

-1.5 : '
0.0E+00 5.0E-06 1 .OI%—OS 1.5E-05 2.0E-05 FFT

10°

107 i A —T——
1 0'4 | |

<_: 1 0'6 | |
10” | |

10" y/ continuous

102 | | _ pulse
0 100000 200000 f 300000 400000 500000

5/11/17 AMS Seminar



Continuous vs. Pulse forcing

/A

1.5

1.0}
05}
.

Wide range of
frequencies
forced with

pulse

< 0.0}

<
-0.5

Single
frequency
forced with
continuous
forcing

continuous
pulse

[A

|\

\

W

VARV

v,

[VARRVIRERV/

5.0E-06

1.0E-05
t

1.5E-05

2.0E-05

102 //\Jlf / IA\ |
10" ,/
< 107 /l\\
10" ﬁ continuous
102 | | _ pulse
0 100000 200000 f 300000 400000 500000

FFT

* Note: with continuous forcing we can accurately control the frequency of the
disturbance waves that are introduced

5/11/17
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How to initiate laminar-turbulent transition? ZAS

 We initiate a so called “controlled” breakdown

* Through continuous forcing of ...
= a 2D disturbance wave: so-called primary wave
= a 3D disturbance wave: so-called secondary wave
= Both waves have the same frequency f, (primary wave frequency)

 This “controlled” breakdown scenario is called the fundamental resonance
scenario

5/11/17 AMS Seminar



What are 2D and 3D waves? ZAS

* 2D waves: axisymmetric, wave fronts are orthogonal to x-axis, no modulation

1n azimuthal direction

* 3D waves: modulation in azimuthal direction, wave fronts are oblique w.r.t. x

0.05¢
>
-0.05¢

. 0.03
>‘

00 0.1

amplitude
m 0.006
“10.006

2D wave

0.05 0.03—

> >

-0.05/ | | | = . g\\g
00 01 02,03 04 -0.03" 5, 0.03

amplitude

== 0.006 X

= 10,006

5/11/17
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What do we mean by disturbance waves? ZAS

* We introduce waves (denoted by a ') that “disturb” the laminar base flow

4 2
e Disturbance ansatz:
¢ = Pbase flow T ¢’ ™
= . Q
D
. 4 0 4 O 24 6 8§ 10
Re t
4 A 4
G 0 _
. . 2t
Growing/decaying part
= S— 4_
6-
Oscillatory part
| Tpart]

5/11/17 AMS Seminar



Terminology

* mode (n,m) is shorthand notation for
(n fo, m K 40m0i0); Mode = wave

* Primary wave: mode (1,0)

* Secondary wave: mode (1,1)

y/rcone ( X)

R
S

-1 0 1
z/rcone(x)

0.2 0.4(p/(270)0-6 0.8

5/11/17 AMS Seminar



How do we pick the input parameters? ZAS

* What do we need?
1) A primary wave frequency f
2) The wave number k_ of the secondary wave

* How to get {,?
Map out linear stability regime by running a pulse simulation
Discussed in Primary Wave part

* How to get k_ of secondary wave?
Parameter study of fundamental resonance onset
Discussed in Secondary Instability part

5/11/17 AMS Seminar



Outline
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Primary Wave
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Primary Wave A

Increasing disturbance level

Forcing environmental disturbances Not to scale

' U
Receptivity mechanisms m

\

(a] Transient growth

0 U
0 |0 [0 —

Freestram turbulence entering
the Boundary Layer

Eigenmode growth \
Parametric instabilities Bypass B
and mode interactions meczanisms Receptivity = Eigenmode Parametric instabilities, Breakdown Turbulence
0 ¥ mechanisms  growth mode interactions
Breakdown
Turbulence

Eigenmode growth — linear behavior
Goal: Find most amplified 2D wave

5/11/17 AMS Seminar



Why 2D wave? A

* Extensive research on compressible Linear Stability Theory by L. Mack

* Once we exceed a certain Mach number (= 4) the 2D modes are most
amplified

mamn first mode (inviscid)
mmm Ssecond mode (inviscid)
— - first mode (viscous)
B sccond mode (viscous)

10

5/11/17 AMS Seminar



Primary Wave A

* Axisymmetric pulse simulations to map out linear stability regime

FFT
f, =300 kHz
1.1E-05 - — 10-4 . .
= x=0.105m < =0.105m
_ £0.0E+00 x =0.200 m
= -1.1E-05 . - \ 10° x =0.300 m]
" 0.0E+00  2.5E-05 5.01%-05 7.5E-05  1.0E-04 \ x =0.400 m
. 1.OE-08 "= 5200 m 10"
_ $0.0E+00 W .
o NN =
-1.0E-08 N : : 32107 \
0.0 (AR otz 0.3 04 "o \\ / \ / \
_ 1.OE-06 "+ = 0300 m SERIRR o .
B v 4
-2 O.0B+00 wmmw = J }\J \ ﬁ/
-1.0E-06 ‘ = AN < ‘ 14
0.0 0.1 %2 . 03 0.4 10 | \ |
L.OE-04 12— 0.400 m : N \\\ / | %\VK\M\
'c—,_:“ - Y. N\ 1 N R 10—16 | | | / ]
’Qf 0.0E+00 0.0x10" 3.0x10" 6.0x10"” 9.0x10™ 1.2x10™ 1.5x10""
-1.0E-04 . | £
0.0 0.1 Ot2 0.3 0.4
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Primary Wave

* Definition: N = In(A(x)/
A(X0)), where Xo 1s the
reference position

400000

* Jti1s a measure of how much

a wave grows in downstream 300000
direction
|
200000 [

M=6 | B

= 100000 it -
Ty =420 K, 0.1 0.2 0.3 0.4 0.5
p, = 140 psi X

5/11/17 AMS Seminar



Primary Wave A

400000

. 3
Choose primary wave 00000

frequency f, =300 kHz

200000

M=6 | 4

= 100000 L
Ty =420 K. 0.1 0.2 0.3 0.4 0.5
p, = 140 psi X

5/11/17 AMS Seminar
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Secondary Instability A

Increasing disturbance level

Forcing environmental disturbances |
Receptivity mechanisms m

\

(a] Transient growth

lo U,

: 0 06 |0 —
Eigenmode growth |

\/ \ /

Freestram turbulence entering
WM‘M the Boundary Layer

\

Parametric instabilities Bypass — ) —
and mode interactions mecﬁgnisms Receptivity Eigenmode Parametric instabilities, Breakdown Turbulence
) ¥ mechanisms  growth mode interactions
Breakdown
Turbulence

Mode interactions/resonance
Goal: Find 3D wave that experiences strongest growth after resonance

5/11/17 AMS Seminar



Fundamental Resonance Onset ZAS

* How does the behavior of the secondary wave change when force by itself
and when forced in the presence of a primary wave

0 0
“=-10¢t “=-10¢t
< <
_B _B
= =
£ 20 £-20
5 5
30+ 30
0.15 0.20 0.25 X 0.30 0.35 0.40 0.15 0.20 0.25 X 0.30 0.35 0.40
1.5 1.5
1.0r 1.0r
< o
£ £
Q Q
0.5f 0.5f (1.0)
(1,1)
0.0 | | (1,1) linear 0.0 , | — (1,1) linear
0.15 0.20 0.25 e 0.30 0.35 0.40 0.15 0.20 0.25 e 0.30 0.35 0.40

I
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Fundamental Resonance Onset ZAS

* The secondary wave experiences strong growth once the primary wave
reaches large enough amplitude => fundamental resonance

. s - : Primary wa aturation
Deviation from linear behavior N NS GG,
N
N\
~-10f | | | 10}
_Z _B
:2:-20 | Phase speed “locking”J :2:-20-
30 =30+
0.15 0. 0.40
1.5 Y
10} 10t
< s
= =
O O
0.5 05
(1,1)
OO 1 1 (191) linear 00 | | (1,1) linear
0.15 0.20 025 , 030 0.35 0.40 0.15 0.20 025 , 0.0 0.35 0.40

5/11/17 AMS Seminar



Growth Rate of Secondary Instability

/A

* k_ of disturbance wave that
experiences the strongest
secondary growth rate
changes in downstream
direction

* Strongest secondary growth i
rate after fundamental 2" 100 S\
resonance onset: k. = 80

—

primary wave
saturation location

‘”‘rl“‘m
il
‘ | WA TR
0 ‘ LT “ |
il ' h"‘ , }MIL ‘
il s || O
J (4 ¢ |
o ]
il :
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Parameters for Fundamental Resonance ZAS

* Disturbance input for fundamental breakdown simulation

* Primary wave (1,0):
= Frequency =300 kHz
* 2D: k.= 0, no modulation in azimuthal direction

* Secondary wave (1,1):

* Frequency = 300 kHz
* 3D: k, = 80 => 80 wavelengths around the circumference of the cone

5/11/17 AMS Seminar
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Fundamental Breakdown A

Increasing disturbance level

Forcing environmental disturbances | NOt tO Scale
\J /VWW"M Freestram turbulence entering [
Receptivity mechanisms m the Boundary Layer SBL -
¥ _—— i
/
(a] Transient growth
‘0 u_ (4
: o |0 |0
Eigenmode growth
Parametric instabilities Bypass
and mode interactions mecﬁgnisms Receptivity =~ Eigenmode Parametric instabilities, Breakdown Turbulence
) ¥ mechanisms  growth mode interactions
Breakdown
\/
Turbulence

All the way from linear growth to breakdown

5/11/17 AMS Seminar



Fundamental Breakdown

 Conditions:
" po = 140 psi
= T,=420K
= Re, =10.82 10° 1/m

* Primary wave, mode (1,0)
" f1,0= 300 kHz
" K. (10 =0=>2D wave
" Agog = 104

* Secondary wave, mode (1,1)
* f,,,,=300kHz
" Keq.)=80=>3D wave
“ Agn= 102

5/11/17 AMS Seminar



Fundamental Breakdown ZAS

80-01
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Fundamental Breakdown A

* ‘Overshoots’ in Stanton number and skin-friction coefficient compared to
turbulent estimate

0.008 . 0.012 \ ‘
t-ave., 80-¢1 t-ave., 80-¢1
t-ave., 80-¢02 | ——— t-ave., 80-02 /s
——— otave., k =80 MM ————— otave.k =80, ||}
0.006 ————— base flow ! \

— — — lam. est.
——-—- turb. est.

— base flow ) \
U 0.008— — — lam. est. ! '

——-—- turb. est. b

0.004 e :
- 'overshoot' ——m; / W - ‘ 'overshoot' \'.l
Q i \ Q 0.004 i i
' ﬁq deviation from |

0,002 T SD°7/\\W4 S laminar value

| laminar value \ e S~ == :\\—J/_ \ m ﬁM
B I e -:)\1‘[\_/‘//—-— — 0.000 — _'/—7‘;,‘:;*""— =
—

0000 ——————— S .
drop to laminar drop to laminar

— value — value
— —
-0.002 J J -0.004 ' ‘ J
0.15 0.25 0.35 0.45 0.55 0.15 0.25 0.35 0.45 0.55
X X
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Fundamental Breakdown ZAS

0.010 |
- 80-01 D
N 0.
0.000 ===
0.010F

0.36 0.37 0.38 0.

}%9 1 0.40 0.41 0.42
|
Ll P ——— 28 <P% ,,*'f\ Clearly distinct
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Fundamental Breakdown ZAS

0.010

80-¢l
80-¢p2

N 0.000

Streak development appears to be strongly linked to
three dimensional effects
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Fundamental Breakdown ZAS

* Streaks appear (80-x1)

* Streamwise vortices form when streaks begin to appear
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Fundamental Breakdown ZAS

* Location where Stanton number becomes maximal (80-x2)
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Fundamental Breakdown A

* Streaks begin to fade (80-x3)
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Fundamental Breakdown A

* Streaks disappeared (80-x4)
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Fundamental Breakdown A

» Streaks reappear (80-x5)

O base flow
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Fundamental Breakdown A

Summary:

* vortices form =>
streaks appear

* vortices ‘lift up’ =>
streaks disappear

* main vortices pushed DY A e e
back to wall => streaks |
reappear
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How many streaks are there? ZAS

* 80 streaks at position where streaks first appear (corresponding to wave
number of secondary wave)

. streaks at position where streaks reappear
0.0075 ; 0.012

skin friction coefficient I SOz I Stanton number SO
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Fundamental Breakdown
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* Mode (0,1) becomes
dominant when
streaks appear (|1

max)

e Streaks are linked to
steady longitudinal
vortex modes
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Fundamental Breakdown ZAS

e How do the streamlines look in 3D?
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Fundamental Breakdown A

e How do the streamlines look in 3D?
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Fundamental Breakdown ZAS

* Visualizes streamwise streaks with @,

I Counter-rotating
@, @, streamwise vortices C,
100 — 100 e 0.008
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e ——

streaks
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Is the flow turbulent? ZAS

* There are different ways to assess if the flow has completely transitioned to
turbulence
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Is the flow turbulent? A

* For a turbulent boundary layer we would expect the so called log-layer to
form in the Van Driest transformed velocity profiles
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Is the flow turbulent?

A

* For a turbulent boundary layer we would expect the so called log-layer to
form in the Van Driest transformed velocity profiles
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Flow has progressed far into the breakdown regime but doesn’t seem to
be fully turbulent yet
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Fundamental Breakdown A
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Outline
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Summary A

Goals of this research:

* Explore and understand underlying physical mechanism(s) of streak
development in the nonlinear stages

Findings:

* Largest N-factor for primary wave: f, = 300 kHz

* Strongest resonance for k_ = 80

* Number of streaks in circumferential direction corresponds to azimuthal wave
number of dominant secondary wave (80 streaks)

» Streak formation leads to significant overshoot in skin friction and Stanton
number

 Streaks are strongly linked to streamwise vortical modes, in particular mode
(0,1)
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