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Motivation B -y

Average CFD FM accuracy was 2.4% (2009)
< It was believed that poor rotor wake resolution was responsible
< This lead to research in off-body (OB) adaptive mesh refinement (AMR)
* In 2011 (Chaderjian/Buning): CFD FM predicted with 0.2% for V22 TRAM
< Vortex wake resolution had no effect (10%, 5%, and 2.5% Ciip

< Rather, it was crucial to

= Adequately resolve the formation of the blade-tip vortex
< Fine surface mesh near rotor tip and high-order spatial accuracy

= Maintain a physically realistic turbulent eddy viscosity in the vortex wake
< Detached eddy simulation (DES) turbulent length scale
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Motivation

In 2012 (Chaderjian/Ahmad): UH-60A rotor in hover and forward flight (C8534)
% Airloads did not depend on rotor wake resolution
Both studies did not involve significant blade/wake interaction

Coarse Wake-Grid Fine Wake-Grid
Resolution Resolution
AS=10%c;, AS=2.5%c,
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Objective = >

* Animportant question remains

< How are the forward-flight CFD airloads affected by rotor-wake
resolution when there is significant blade/wake interaction?

< Practical engineering issue: High resolution wakes are too expensive
for most engineering applications today

 Two examples for a UH-60A rotor in forward flight are examined
< Blade vortex interaction (BVI), flight-test counter C8513
< Dynamic stall with BVI, flight-test counter C9017

e Also examine the physics of 2D and 3D dynamic stall
< Discuss similarities and differences in 2D and 3D dynamic stall
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Blade vortex Interaction (BVI)
< When a rotor blade interacts with the tip vortices from the other rotor blades
< Often produces high and irritating sound levels

Dynamic stall
< When the required thrust exceeds what the rotor can provide
< Loss of Thrust (stall) and increased vibration
< Usually occurs at high flight speeds or load conditions
= Limits vehicle flight speed, payload capacity, and maneuverability
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What is BVI and Dynamic Stall? =~
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Flight-Test Data/CFD Validation =

* Joint NASA/U.S. Army UH-60A Airloads Database (1993/1994)
< Airloads at various radial locations along the rotor blade

* Bousman’s qualitative analysis of dynamic stall (AHS Journal/Oct. 1998)

< He examined the time history of blade pressures to judge when

= Moment stall: Formation of dynamic stall vortex at blade leading edge

= Lift stall: When dynamic stall vortex passes over blade trailing edge

= Flow separation at blade trailing edge
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Loose
Coupling
Every
% revolution
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Numerical Approach oo
(CFD/CSD Loose Coupling)

— OVERFLOW 2.2L — CFD Flow Solver

Solves the time-dependent Navier-Stokes equations
< Structured overset grids
% 2"d-order dual time accuracy (At=° rotation, 60 subiterations)
= At least 2.3 subiteration residual drop for all grids
<+ 5th-order spatial accuracy (central differences/artificial dissipation)
< Hybrid RANS/LES turbulence model
= Spalart-Allmaras one-equation turbulence model
= DDES length scale
= SARC rotation/curvature correction
= Y*<1 at body surfaces

— CAMRAD Il — Helicopter Comprehensive Analysis Code

Provides rotor-blade aeroelastic deflections
Provides trim control angles at the blade root
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Numerical Approach -
(Near-Body and Off-Body Grids )

Cartesian Off-Body Grids Rotor-Blade Grids

Blade Tip

Level-1 Cartesian Grid Level-1 AMR
Cartesian Grids

Trim Tab

Level 2

As=5% C,;,

* Rotor blades/Hub use O-mesh topology

e Off-body grids use Cartesian grids with adaptive mesh refinement (AMR)
* Rotor wake captured only with Level-1 grids (10%, 5%, and 2.5%c;)
* Nointerpolation throughout the resolved rotor wake

< Has same resolution and coincident overlapping grid points
10
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Numerical Approach
(Overset Grid Statistics)

Grid Type Number of Grids Surface Grid Points Volume Grid Points

Rotor Blade 117,763 11.8 million
Rotor Hub 3 28,875 2.5 million
Total (Near/Off-Body) 750-14,700 499,927 83 million — 1.8 billion

-0
Armaxi? Actip

Grids split into
upper & lower grids for

future NB AMR applications
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Numerical Approach

(Off-Body AMR Bounding Boxes — Dynamic Stall )
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Nomenclature o

Advancing
Side of Rotor
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BVI Flight Counter C8513
NASA’S OVERFLOW Navier-Stokes CFD Code

M., My, H Rey, | deg| b, deg C;

0.0982 0.643 0.153 7.15x10° 0.75 7.71 0.00675

Wake-Grid Spacing
l AS=2.5%cy,
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Three AMR Wake-Grid Resolutions ==
BVI Flight Counter C8513

NASA’s Pleiades Supercomputer
5,628 Broadwell CPU Cores

500 Grids /
87 Million Grid Points "
4.6 Hr/Rev

1

.

B AS=5% ¢,
2,500 Grids

297 Million Grid Points
7.8 Hr/Rev

12,000 Grids
1.8 Billion Grid Points
40 Hr/Rev
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Loose Coupling Convergence History ==
BVI Flight Counter C8513

i

Blade Root Control Angles
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Effect of Wake-Grid Resolution on Airloads
BVI Flight Counter C8513

 Good overall agreement with flight-test data

* OB resolution has very little effect on airloads!
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CFD Animation of Two-Dimensional Dynamic Stall
a =10°+10° sin(2kt — £), k = 2607C=0.1

oo

How Most People
Think of Dynamic Stall

D

Vortex forming at airfoil leading edge — (moment stall)

Vortex passing airfoil trailing edge — (lift stall)

Reversed flow

< As vortex forms at leading edge

< As vortex traverses the airfoil and passes over trailing edge
Three stall events, each smaller than the previous one

20
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\ a=16°

T Upstroke

x a=14°

— 0=12°

_ RWLT

Two-Dimensional Dynamic Stall Ao

o =10°+10°sin(2kt — ), k= —< = 0.1
2V

oo

/
0‘0

* Force/moment time-history
indicates 3 stall events

2-3 typical

2D characteristics identified
experimentally (McCroskey
et al., 1976)

Many feel 2D captures the
essential elements (Tan &
Carr, 1996)

It will be shown that 2D does
miss some important 3D
dynamic stall characteristics

21






High-Resolution Dynamic Stall (C9017) -~ RWLT

f\../*;*}/\\
NASA’S OVERFLOW Navier-Stokes CFD Code -
M., My, H Rey, |Agamwdeg| b, deg C;
0.158 0.666 0.237 4.62x10° -0.15 -1.58 0.0110
There is BVI
It is affecting the dynamic stall process
Wake-Grid Spacing g gy

AS=2.5%c,,

0 23



Three AMR Wake-Grid Resolutions
BVI Flight Counter C9017

NASA’s Pleiades Supercomputer
5,628 Broadwell CPU Cores

760 Grids
83 Million Grid Points e~
4.5 Hr/Rev . \

o]

3,200 Grids
241 Million Grid Points <=2
6.2 Hr/Rev

14,700 Grids
1.3 Billion Grid Points
28.5 Hr/Rev
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Loose Coupling Convergence History ==
BVI Flight Counter C9017
Blade Root Control Angles
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Effect of Wake-Grid Resolution on Airloads i
Dynamic Stall Flight Counter C9017 |
Good overall agreement with flight-test data

[ J
* More high-frequency content, but little effect on airloads!
* This suggests AS=10%c,, adequate for engineering design airloads
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Closeup View of 3D Dynamic Stall With BVI R

* Inboard and outboard separation, with attached flow in between

e 3D Vortex rings emitted due to Helmholtz vortex theorem
< Different from 2D Vortex lift-off
* Vortex path altered due to separation

< Can effect aeromechanics of following rotor blades

27
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Closeup View of Dynamic Stall SO

* Flow separates outboard of vortex,

remains attached inboard of vortex
e Separation moves with the vortices
* Tip vortices from Blades 2 and 3

« Tip vortices from Blades2 and3do  Nomenclature appear to trigger dynamic stall

not disrupt the flow on Blade 1 Blade 1 at y=225
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Separation
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Vortex Blade 3
Vortex 9g

Blade 2




Rotating Blackhawk Rotor Blade
But What Happens When a Vortex Passes Over the Blade?

Lower Incidence
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Inboard of Vortex

outboard of the vortex and

least 10 deg

Outboard of Vortex




Closeup View of a Single Blade e

(Same Blade Motion and Aeroelastic Deflections)
No outboard separation in the 3 quadrant!
< This confirms vortex-induced dynamic stall
Inboard separation due to freestream reversed flow
Separation along entire blade in 4™ quadrant, due to blade incidence

o]

Azimuth, Deg
90.00
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BVI-Induced Dynamic Stall (C9017) e

This phenomenon is virtually unknown throughout the rotorcraft community

First observed in a 2D airfoil experiment
% 38t European Rotorcraft Forum: Zanotti, Gilbertini and Mencarelli
< Similar explanation of how a vortex triggers dynamic stall
Also presented at the 7379 AHS Forum (May 2017)
< Francois Richez: Computational analysis for a rotor wind tunnel experiment

< Neal Chaderjian: First time observed for an actual helicopter rotor in flight

CFD is used to provide greater detail and insight than available in the experiment

2D Wind-Tunnel Experiment 3D UH-60A Rotor

3.5 chords

Vortex generator Oscillating airfoil
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Comparison of CFD With Qualitative Flight-Test Analysis < _->
(Dynamic Stall, C9017)

 Polar plot
< Bousman’s moment stall, lift stall, and trailing-edge

separation
—e—EXP M_oment Stall
< There are two stall events oeeunsan o || Ve
. . —— CFD Outboard Vortex
< CFD QOutboard and inboard vortices [ GFD nbozrd Voriex 180 -
1.
= QOutboard vortex initially moves inboard then
outboard o

< Tracks stall closely up to 270°, where it drops below
the blade and has little influence

% Inboard vortex only moves inboard
e Flight test does not indicate inboard reversed flow

< It must be there, but loads are light and pressure
data sparse (Bousman)
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Time-Dependent Flow Visualization of Dynamic Stall
Blackhawk Helicopter Rotor in Forward Flight

34



Image Based Flow Visualization (IBFV)

Time depended surface flow using a IBFV technique
Colored by pressure (Red->High; Blue->Low)

Dark lines show flow separation and reattachment
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Conclusions

Good overall comparison between CFD airloads and flight-test measurements
for BVI and dynamic stall cases

 wake grid resolutions were AS=10%, 5%, and 2.5% Ciip

Refining rotor wakes beyond engineering resolution (AS=10% C,; ) did not
significantly affect the predicted airloads, even with blade/wake interaction

< This suggests that airloads engineers may use the coarser wake-grid
resolution (AS=10%c,;,) for hover and forward fight simulations provided

= The CFD tip-vortex is accurately formed using a combination of fine
surface mesh at the blade tip and high-order spatial accuracy

= Use of a hybrid RANS/DDES turbulence model
< No statement is inferred for acoustics

= High frequency content was observed on the higher-resolution rotor
wakes

36
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Conclusions =
(Continued)

< Differences between 2D and 3D dynamic stall
= 3D vortex rings are emitted rather than a simple 2D leading-edge vortex
= Dynamic stall flow separation can alter the path of a BVI vortex

= Vortices passing over the rotor blade caused BVI which triggered dynamic stall

<~ This phenomenon has been observed in a 2D wind-tunnel experiment and also 3D
rotor simulations (734 AHS Forum)

= Mechanism for BVI-triggered dynamic stall

< Induced velocity field by other blade-tip vortices changed the relative angle of
attack of the stalling rotor blade

o The blade AOA increased outboard of the BVI vortex, causing flow separation
o The blade AOA decreased inboard of the BVI vortex, resulting in attached flow

< The successful modeling of 3D dynamic stall with BVI should include an accurate
prediction of blade-tip vortex trajectories
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