
Towards a Viscous Wall Model for 
Immersed Boundary Methods

C. Brehm and  O.M.F. Browne
Mechanical Engineering, University of Kentucky, Lexington, USA

N. Ashton
Oxford Thermofluids Institute, University of Oxford, Oxford, UK

NASA AMS Seminar Series – 05/03/2018
Initially presented at 2018 AIAA SciTech Forum, Orlando, Florida
Session FD-48: Cartesian, Overset, and Meshfree CFD Methods 1



Courtesy M. Barad 
(NASA Ames)

O.M.F. Browne, A.P. Haas, H.F. Fasel, and C. Brehm, “An Efficient Strategy for Computing Wave-
Packets in High-Speed Boundary Layers Over Complex Geometries”, AIAA Aviation, 2018
O.M.F. Browne, A.P. Haas, H.F. Fasel, and C. Brehm, “An Efficient Strategy for Simulating 

Nonlinear Wave-Packets in High-Speed Boundary Layers”, AIAA Aviation, 2018
O.M.F. Browne, A.P. Haas, H.F. Fasel, and C. Brehm, “A Global Stability Solver on Block-

Structured Cartesian Domain-Decomposed Irregular Domains”, ParCFD 2018
J. Boustani, O. Browne,  J. Wenk, M. Barad, C. Kiris, and C. Brehm, “A Numerical Method for 

Fluid-Structure Interactions with Large Deformations”, AIAA Aviation, 2018

Oliver M. F. Browne (Postdoc) 

Hypersonic Transition

Fluid-Structure Interaction

Jonathan Boustani
(PhD student) 

Anthony Haas 
(PhD student at UofA, 

Prof. H.F. Fasel ) 



3

Non-Rotational Flow (Ret = 360)

Relaminarization and Turbulence Suppression

S. Ganju, C. Brehm, S. Bailey, ”Examination of the Distribution of 
Dissipative Scales within Turbulent Wall-Bounded Flow” 

Jeff Davis (PhD student, since 08/17) 

Rotating Flow (Ret = 360)

Non-Rotational Flow (Ret = 590)

Rotating Flow (Ret = 590)

J. Davis, S. Ganju, S. Bailey, C. Brehm, “Direct Numerical Simulations of Turbulence 
Suppression in Rotating Pipe Flows”, ParCFD 2018

Sparsh Ganju
(PhD student) 

DNS of Wall-Bounded Turbulent Flows

John Higgins
(Incoming PhD 

student, research 
topic undecided) 

Collaboration with Prof. Bailey (experiments at UK)

Collaboration 
with Prof. Bailey

adjusted from Imao et al.



Motivation/Introduction
Current state and challenges for IBM.

Immersed Boundary Method (IBM)
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Introduces basic idea of immersed boundary method.

Validation Study
Validation of newly developed method.

Final Discussion and Conclusion
What is the current state and what is next? Additional Challenges.
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Arbitrary geometry immersed into
a Cartesian grid, where fluid and solid 

domains are marked with WF and WS, and 
immersed boundary as Ws/F.

Motivation for Immersed Boundary Methods
Why Cartesian mesh methods?

q Grid generation process can be fully automated
q Cartesian mesh provides excellent numerical 

solution properties (although boundary operators 
can be problematic)

q Higher-Order accuracy can be obtained in a 
straight-forward fashion for interior operators

q Well-suited for exa-scale computing (data locality, 
tree-structure, etc.)

q Fully-Eulerian solver approach for fluid-structure 
interaction problems (eliminating procedures for 
mesh deformation, transfer of solution from Wn to 
Wn+1, etc.)
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Immersed Boundary Methods

Algorithmic challenges for IB Cartesian Mesh Methods:
q Grid stretching approaches are not efficient and 

defeat the purpose of IBM methods
Ø Some type of block-structured Cartesian mesh 

topology is advantageous (AMR)
q Higher-order boundary operators (preferably 

provable stable) not straightforward to obtain see
see for example, Linnick and Fasel, Zhong, Duan et al. , Brehm and 
Fasel, Brehm et al. , and others

q Dynamic load balancing (especially for moving or 
deforming boundary problems)

Immersed Boundary Methods (IBMs) have been developed and extended 
for a number of years (Peskin et al. , Goldstein et al. , LeVeque and Li, Wiegmann and 
Bube, Linnick and Fasel, Johansen and Colella, Mittal and Iaccarino, Zhong, Duan et al., and many more.)
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Immersed Boundary Methods
Algorithmic challenges for IB Cartesian Mesh Methods (cont’d):

q Automation of volume mesh generation is traded against algorithmic complexity to 
handle complex geometries (in-out testing, cloud stencil search algorithms, grid-line 
intersection, distance function, etc.)
Ø Geometry is required to be watertight and resolution of surface grid affects accuracy

7Brehm, Barad, and Kiris (JCP 2018, submitted)



Immersed Boundary Methods
Physical limitations of current Cartesian grid methods:

q Mesh-alignment with shocks (especially problematic for hypersonic flows)

q Method is currently limited to solution of Euler equation and low Reynolds 

number applications

Ø IB approaches are inefficient in resolving 

boundary layers since Cartesian mesh generally                                                                       

does not allow the use of (wall-normal) high 

aspect ratio cells at the wall                                                                                                      

→ wall-resolved simulations are too expensive

Ø Consider that for DNS NGrid ∼ ReL
37/14 and for LES NGrid ∼ ReL

13/7

Ø With Wall-modeled LES the grid resolution can be significantly reduced 

with NGrid ∼ ReL

Ø Practical importance of wall-modeling in LES for high Reynolds number 

flows (even for body-fitted meshes)

Choi & Moin, 2011
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Viscous Wall Extensions

q Ruffin and Lee (2009) combined IB ghost cell approach 
with standard k-e turbulence model by Launder and 
Spalding with Spalding's wall model formulation
§ Fair agreement for subsonic 2D and axisymmetric test 

cases (flat plate & airfoil) 

q Berger and Aftosmis (2012) combined Cartesian cut-cell 
finite volume method with analytic wall model that is 
based on the Spalart-Allmaras turbulence model
§ Good agreement for flow over a flat plate and sub- and 

transonic airfoils
§ Convergence of surface pressure Dx=0.1% × chord and 

converged surface skin friction for 2-4 smaller grid 
spacings

Taken from Kiris et al. (2016)

Ghost Cell Method
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Cut Cell Method

Taken from Tucker and Pan et al. (2000)



Viscous Wall Extensions
q Tamaki et al. (2017) developed an IBM for turbulent flow 

simulations based on analytical S-A turbulence model
§ Two key modifications of an earlier 2016 version:        

(1) linearly extrapolate velocity of the forcing point to 

the wall and (2) modification of eddy-viscosity profile 

to maintain balance of the shear stress

§ good validation results against body-fitted results 
for flat plate, NACA0012 airfoil, and turbulent flow 

over bump in the channel

Taken from Tamaki et al (2017)

IBM for turbulent flows

qBerger and Aftosmis (2017) followed up on previous work from 2012

§ System of ODEs coupling the streamwise velocity and the turbulent viscosity replaced 
analytic wall function

§ Streamwise momentum equation included the pressure gradient and convection terms 

§ excellent comparison against body-fitted CFD results for 2D test cases even for y+ > 100.

q Another strategy is to couple the IB Navier-Stokes solver to an integral boundary layer 

(IBL) method (see Drela (1987), Aftosmis (2006), Rodriguez (2012))
10
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12

qInitial observation: 
“Stability of numerical scheme can be formulated as 
N-dimensional optimization problem” 
(N=number of irregular grid points)

qDerivation of stencil coefficients:
§ Enforce order-of-accuracy

§ Additional grid point is needed to introduce free parameter 
§ Objective function depends on the nature of the PDE, e.g., lr,max or r(A) 

§ Extract perturbation of irregular finite difference stencil (assume B=I)

Irregular grid point

Brehm & Fasel (JCP, 2013, 2015), applications: Brehm, Barad, & Kiris (JCP 2018, IJFH 2017), Brehm, Barad, Housman & Kiris (JFM 2016)

discr.

cond.

Basics of Stability Enhancement Approach



Basics of Stability Enhancement Approach

qSolving N-dimensional optimization problem is too expensive
qApply localization of FD stencil which turns N-dimensional problem

§ into N x 1-D problems (localization was demonstrated) Brehm and Fasel (JCP, 2013)
13



§ Numerical flux derivative at xi:

§ Truncation error obtaining flux at xi+1/2

§ Truncation error obtaining flux at xi-1/2

§ Substituting (2) and (3) in (1) leads to:

Ø To recover formal order-of-accuracy 
match not only order but also leading 
term of truncation error (Brehm, JCP 2017)

Conservative Finite-Difference Method – Convective  Terms
q Conservative Finite Difference Operator:

q Scheme relies on error cancellation

point values of split fluxes, f±(�i). Hence, finite di↵erence WENO schemes can only use flux vector
splitting-type schemes in the form, f+(�i) + f

�(�i). In multi-dimensions, the computational cost
of finite volume schemes is generally higher because for nonlinear fluxes, multiple flux evaluation
typically at Gaussian quadrature points become necessary. Nonomura et al.

48 introduced a variable
interpolation approach for finite-di↵erence schemes which recovers the flexibility of finite volume
schemes with respect to the choice of the flux.

Finite di↵erence and finite volume schemes are quite di↵erent because in the finite di↵erence
scheme the reconstruction is based on node values and finite volume schemes use cell averages for
the interpolation. The finite volume and the finite di↵erence approaches can be linked by implicitly
defining the primitive function h(x) of the flux f(x) as

f(x) =
1

�x

Z x+�x/2

x��x/2
h(⇠)d⇠, (16)

so that the spatial derivative @f/@x is exactly defined by a conservative finite di↵erence formula

@f

@x
=

1

�x
(hi+1/2 � hi�1/2) =

1

�x
(f̂i+1/2 � f̂i�1/2) +O

�
�x

2n�1
�
. (17)

Therefore the numerical flux f̂i±1/2 should approximate hi±1/2. Equation (16) will be used at several
points in this section to derive WENO candidate stencils for the flux reconstruction approach.

The basic idea of WENO schemes is to combine lower order candidate stencils for the interpolation
to the midpoints to achieve a higher-order approximation in smooth regions and an essentially non-
oscillatory interpolation at discontinuities.42,49–52 Numerical methods for the convective terms based
on WENO schemes come in various forms. Both variable interplation or flux reconstructions can be
applied to the variable/flux itself or the variable/flux in characteristic space. Another variation of the
schemes comes from choosing between standard or compact interpolation/di↵erences. Interpolation
is used to obtain the variables or fluxes at the interface and numerical di↵erentiation is used for
di↵erentiating the actual fluxes at the nodes from the fluxes at the faces. In what follows, we will
introduce the WENO scheme in a general form which applies to variable interface interpolation as
well as interface flux reconstruction. Depending on choice of the numerical scheme the actual stencil
coe�cients and weights will be di↵erent. For this reason we will use a placeholder variable called �,
that refers to both, the variable or the flux. When referred to only the variable or the flux, q and
f are used instead of the placeholder �. The scalar quantities q and f will later be replaced with
vector quantities, Q and F , for the solution of the Euler and Navier-Stokes equations.

The final interface variable/flux, �̂, at the interface can be written as

�̂i+1/2 =
nX

k=1

!k�
k
i+1/2, (18)

where n is the number of candidate stencils, �
k
i+1/2 is the interface variable/flux based on the

k
th candidate stencil, and !k are convex weighting coe�cients. Choosing the optimal weighting

coe�cients !k = ck for all k results in a (2n � 1)th-order accurate numerical scheme, where n is
the number of candidate stencils. The WENO scheme obtain these optimal coe�cients in smooth
flow regions. The idea is to use a smoothness indicator which determines if the flow is smooth
or has large gradients/discontinuities. The smoothness indicator applied to each candidate stencil
essentially scales the optimal weights. An interim quantity ↵k is defined as

↵k =
ck

(�k + ✏)p
, (19)

where �k is the smoothness indicator of the k
th stencil. The power p, here only p = 1 and 2, in the

denominator is used to achieve fast convergence to zero in non-smooth flow regions. To avoid division
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Conservative Finite-Difference Method – Convective  Terms
q For third-order accurate scheme we implicitly define primitive function h(x) of flux 

• Use over-determined stencil to obtain free parameter
qNeed to define appropriate interpolation operators at domain boundaries

i i+1           i+2           i+3                      

i-1/2        i+1/2      i+3/2      i+5/2       i+7/2

i i+1           i+2           i+3                      

i-1/2        i+1/2      i+3/2      i+5/2       i+7/2

y>0.5: y<0.5:

∂W ∂W

h(x) = h0 + h1x+ h2
x2

2!
�! f̂ =

1

�x

Z x+�x/2

x��x/2
h(⇠)d⇠ = h0 + ....
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Conservative Finite-Difference Method – Convective  Terms

q Conservative FD operator is derived such that
1) Accuracy constraints (for derivative ! and appropriate interpolation " operators)

2) Telescoping derivative operator, ! (“telescopes flux from boundary to boundary”)

#$
#% = ! $ + ((∆%+)

∆=

−1 1 0
0 −1 1
0 0 −1

0 0 0
0 0 0
1 0 0

0 0 0
⋱ ⋱ ⋱
0 0 0

−1 1 0
⋱ ⋱ ⋱
0 0 −1

! =

12 32 42
15 35 45
0 1 3

62 0 0
65 0 0
4 0 0

0 0 1
0 0 0
⋱ ⋱ ⋱

3 4 0
1 3 4
⋱ ⋱ ⋱

#$
#% = ! $ = ∆7$=∆ " $ + ((∆%+)

or 7$= " $ + ((∆%+)

with end point flux consistency 7$2/9= $2/9

and

19
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q Matrix Stability Analysis - Spectral radius of update matrix

qStability regions for advection equation with advection speed cx
(using third-order accurate extrapolation operators)

Conservative Finite-Difference Method – Convective  Terms

Stability regions for 
with cx > 0!"

!# + %&
!"
!&=0

Stability regions for 
with cx < 0!"

!# + %&
!"
!&=0

20



Conservative Finite-Difference Method – Viscous Terms
qOriginal Non-conservative approach:

§ Velocity and temperature are provided ∂W 
Ø Problem: How to provide viscous flux at the wall?

q Conservative approach

§ Need to compute viscous fluxes at faces
§ Treat viscous fluxes consistently at irregular faces
§ Truncation error for all derivatives need to match

and

with ,

(i,j)        (i+1,j)

(i+1/2,j)

(i+1/2,j)

(i,j-1) (i+1,j-1) 

(i,j+1) (i+1,j+1) 

21



Conservative Finite-Difference Method – Viscous Terms

qViscous flux are computed at irregular faces and grid line intersection points (for wall-resolved)

qUsing weighted-least squares stencils to compute derivatives at irregular faces

Irregular faces in vicinity of IB
WLSQR-point cloud for 
derivative computation

22

irregular faces in x
irregular faces in y
immersed boundary



q Solve standard SA transport model  

q Immersed boundary operators are the same as for Navier-Stokes equations                                    
v using new conservative formulation

Finite-Difference IB Method – Turbulence Model

Production term

Diffusion term Dissipation term

23
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Wall Modeling Approaches – Near-wall analytical solution
qBoundary layer simplification for x-momentum equation, i.e., simple diffusion equation and 

mixing length assumption for turbulent viscosity

qIntegrating and manipulating terms gives the following analytical expression

qAnalytical SA wall function constants

25



Wall Modeling Approaches – ODE-based wall model
qWe include streamwise pressure gradient and convective terms to capture greater physics

qEmpirical cutoff function for convective terms along the ray, 
using the velocity derived from analytical wall function, 
previously described

qSolve a simplified SA model  - neglecting streamwise gradients

qSecond-order central FD scheme, inverted via Newton iteration (with exact linearization)

Diffusion only models

26Berger and Aftosmis (2017)
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IBM-VWM Coupling

Wwm: approximate boundary layer solution domain
WF: Cartesian grid solution domain

(enlarged) 

q Within Wwm domain, wall model is 
assumed to provide valid flow information

q Important to provide smooth transition 
between Wwm and WF

q Strong interplay between numerical 
implementation details of IBM and wall 
model is expected

q Grid resolution at boundary layer edge is 
crucial (see also Spalart 2015 on 
turbulence modeling for body-fitted mesh)

q Simplistic way of viewing the viscous wall effects -- flow partially slips past wall:
(1) Supply the “right” force to the under-resolved flow to control BL growth
(2) Obtain friction force on immersed geometry → requires some type of wall model

28



IBM-VWM Coupling – Approximate BL Solution Domain

Illustration of coupling between wall 
modeling approaches and IB solver

FP: forcing point
GLIP: gridline intersection point

irregular point cloud
qWM solved along rays with constant dwm

§ Directional/wall-normal distances vary non-
smoothly causing oscillations

§ WMs display dependencies on wall distances 
where external flow data is provided

q WM is solved as BVP (BCs at yn=0 & yn=dwm)
qTransfer of data between Wwm and Wf:

(1) flow data is interpolated to FP
(2) WM solution is transfer to IB solver at GLIP

q WLSQR stencil cloud provides flow data at yn=dwm

§ data needed depends on wall model
§ with this data WM solution can be obtained

29



IBM-VWM Coupling – Cartesian Grid Solution Domain

q WM solution data needs to be fed back to Cartesian grid solver
q Boundary conditions for Cartesian solver are provided at GLIPs
q Linearly extrapolate velocity to the wall and use as slip-wall 

velocity (ubc)
§ Dissipation from convective flux will be introduced 

depending on numerical flux and discretization scheme

q Viscous flux at GLIP is obtained from tw which is obtained from WM
§ Rotate viscous flux from wall-aligned coordinate system into Cartesian coordinate system
§ assuming that all diagonal components of stress tensor are small
§ Other irregular fluxes use slip-velocity to compute velocity derivatives

q Pressure is assumed to stay constant through boundary layer
30



IBM-VWM Coupling – Cartesian Grid Solution Domain

q Eddy viscosity is obtained in similar way as slip-velocity
§ Linearly extrapolate eddy viscosity if yn < dn,max

§ Use nmax if yn > dn,max

dn,max

31

How to obtain eddy viscosity at GLIP?
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Validation Results – Bump in Channel
Bump in Channel (Re=3×106) Block-Structured Cartesian Mesh

33

q Assess a flow with non-zero pressure gradients from NASA TMR website*
q Inlet/Outlet , no-slip from x=0 to x=1.5 (symmetry prior)
q Symmetry top-wall

*https://turbmodels.larc.nasa.gov/



Validation Results - Bump in Channel (Standalone)
Analytical SA-based WM ODE-based WM

q Reference solution at several constant y+ planes taken as input 
into standalone wall-model

q Differences in ODE based wall model and analytical SA model
q Less effective y+ sensitivity for ODE model

34



Validation Results - Bump in Channel (Standalone)
Analytical SA-based WM ODE-based WM (include CV and PG terms)

q Including pressure gradient and convective terms improves 
accuracy and reduces y+ sensitivity 

35



Validation Results – Bump in Channel (Fully Coupled)
Skin friction curvesPressure distribution

y+=160-660

36

q Fully-coupled results with ODE wall-model demonstrate  very good 
agreement for y+=160, although higher y+ values remain a challenge   



Validation Results – Bump in Channel

Eddy ViscosityStreamwise Velocity Profile

q Good comparison between IBM-VWM and CFL3D at x=0.75
37



Validation Results – Bump in Channel
Eddy Viscosity

q Good comparison between IBM-VWM and CFL3D at x=1.2
38

Streamwise Velocity Profile



Validation Results – NACA0012
NACA0012 (Re=6×106) Block-Structured Cartesian Mesh

39

q Assess a higher Reynolds number case with variable AoA from NASA TMR website*

q No-slip on wall, farfield conditions 500×C away

q Stepping-stone for more complex aerospace cases 

*https://turbmodels.larc.nasa.gov/



Validation Results – Wall Model Only

40

q Reference solution at several constant y+ planes taken as input 
into standalone wall-model

q SA analytical model over-predicts skin-friction but ODE more 
consistent and trending towards correct profile



Validation Results – NACA0012 – Fully Coupled

y+=140-560

Skin friction curves Pressure distribution

41

q Excellent agreement for Cp , more challenging for Cf but agreement is promising

C p



Validation Results

qcf in the back is well captured on coarsest mesh
qcf peak increases progressively with increasing grid resolution
qODE-based wall model seems to align more closely (in agreement with standalone results)

SA-based WM ODE-based WM

42



NACA0012 at 10 AoA

SA-based WM ODE-based WM

43

q Run at 10 AoA to obtain greater pressure gradient effects
q Clear improvement for ODE model – less sensitivity to 

the effective y+ location

dx=2×10-3 (SA)
dx=1×10-3 (SA)
dx=5×10-4 (SA)
FV-Unst.

dx=2×10-3 (ODE)
dx=1×10-3 (ODE)
dx=5×10-4 (ODE)
FV-Unst.



NACA0012 at 10 AoA

SA-based WM ODE-based WM + Conv

44

q Including convective and pressure gradients brings the agreement much closer  -
expectation to see even stronger dependency for more complex flows with strong 
pressure gradient and convective terms

dx=2×10-3 (SA)
dx=1×10-3 (SA)
dx=5×10-4 (SA)
FV-Unst.

dx=2×10-3 (ODE)
dx=1×10-3 (ODE)
dx=5×10-4 (ODE)
FV-Unst.



Sensitivity to Incorrect Input Data

Slip velocity Error in free-stream velocity

Fully-Coupled Standalone

q Effect of an error in the SA field variable n at forcing location
q Significant effect of nw on skin friction data (nw/2 reduces cf)
q standalone simulation reproduces this effect on skin-friction

type A: regular procedure
type B: reduce nw by factor 2

45



Coupling Effects
Fully-Coupled Standalone

Error in free-stream velocity

Note: Uses slightly different viscous discretization scheme.

q Sensitivity of cf w.r.t. an error in the velocity 
q type B boundary condition reduces slip velocity and, thus, skin friction coefficient
q standalone simulation reproduces this effect on skin-friction

type A: regular extrapolation
type B: use gradient at d=80%dwm

46



Coupling Effects
StandaloneFully-Coupled

type A: conservative discr.
type B: non-conservative discr.

q Shows effect of different viscous flux implementations
q Problem with viscous discretization type B is that skin friction at the wall is enforced indirectly

§ Utilizing shear stress from wall model following constant shear assumption
q Change of wall distance by 20% of its true value has significant effect on skin-friction 47
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IBM & VWM Coupling 
Introduces basic idea of immersed boundary method.

Validation Study
Validation of newly developed method.

Final Discussion and Conclusion
What is the current state and what is next? Additional Challenges.

Outline

48



Summary and Conclusions
q Clear sensitivity of IBM-VWM results to WM formulation (even for attached flows)

§ Inclusion of pressure term
§ Improvement of modeling eddy viscosity

q Coupling influences can be significant
§ High sensitivity to errors in input data − still not fully understood at this point
§ depend on details of the underlying numerical schemes

q Conservative viscous discretization scheme significantly improves IBM-VWM results
§ this is essentially a new IBM

q Good agreement for test cases up to around y+≈200 (significant step up from before)

q High-lift common research model (wing area=197m2, Dxy+=1=2×10-5m)
§ Body-fitted mesh 80−240×106 with (180×106 in prism layers)
§ Rough estimate for y+=200 gives 120-200×106 (where y+=100 gives 4×, or y+=1 "(1012)
Ø IBM does not require grid generation and reduces operation count

Ashton et al. (AIAA 2018)
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Thank you for your attention.

Any questions?
Thanks to LAVA team members of NASA Ames Research 
Center, in particular C. Kiris, M. Barad, and J. Housman;                                                                  
interaction on development of Cartesian Grid Methods                                                                         
has been invaluable

C. Brehm and N. Ashton, “Progress in the development 
of an immersed boundary method with viscous-wall            
model for 3D flows”, ICCFD-10, 9-13 July, 2018 
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