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Outline

Motivation/Introduction

Current state and challenges for IBM.

Immersed Boundary Method (IBM)

Introducing conservative FD IB scheme.

Viscous Wall Model (VWM)

Discussion of different viscous wall modeling approaches.

IBM & VWM Coupling

Introduces basic idea of immersed boundary method.

Validation Study

Validation of newly developed method.

Final Discussion and Conclusion

What is the current state and what is next? Additional Challenges.



Motivation for Immersed Boundary Methods @_f.?(z

Why Cartesian mesh methods?

 Grid generation process can be fully automated

 Cartesian mesh provides excellent numerical
solution properties (although boundary operators
QF : can be problematic)

b+

O Higher-Order accuracy can be obtained in a
Q straight-forward fashion for interior operators

L Well-suited for exa-scale computing (data locality,
tree-structure, etc.)

\
0C¢/s

 Fully-Eulerian solver approach for fluid-structure
interaction problems (eliminating procedures for

Arbitrary geometry immersed into mesh deformation, transfer of solution from Q" to
a Cartesian grid, where fluid and solid Qn+1’ etc.)
domains are marked with - and {2, and
immersed boundary as €2




Immersed Boundary Methods ii%

Immersed Boundary Methods (IBMs) have been developed and extended

for a number of years (Peskin et al., Goldstein et al., LeVeque and Li, Wiegmann and
Bube, Linnick and Fasel, Johansen and Colella, Mittal and laccarino, Zhong, Duan et al., and many more.)

Algorithmic challenges for IB Cartesian Mesh Methods: | " @ freshly-cleared cell
[ Grid stretching approaches are not efficient and " dead cell
defeat the purpose of IBM methods
» Some type of block-structured Cartesian mesh BTG L
topology is advantageous (AMR) ALV .
_ ‘ o e n+1
U Higher-order boundary operators (preferably \\Q\ e
provable stable) not straightforward to obtain N
see for example, Linnick and Fasel, Zhong, Duan et al., Brehm and t, :0\ .
Fasel, Brehm etal., and others \\‘\ QN
 Dynamic load balancing (especially for moving or 1 \\,\\
deforming boundary problems) | HE ‘ x




Immersed Boundary Methods @gg

Algorithmic challenges for IB Cartesian Mesh Methods (cont’d):

1 Automation of volume mesh generation is traded against algorithmic complexity to
handle complex geometries (in-out testing, cloud stencil search algorithms, grid-line
intersection, distance function, etc.)

» Geometry is required to be watertight and resolution of surface grid affects accuracy
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Immersed Boundary Methods ii%

Physical limitations of current Cartesian grid methods:
L Mesh-alignment with shocks (especially problematic for hypersonic flows)

[ Method is currently limited to solution of Euler equation and low Reynolds
number applications
» |IB approaches are inefficient in resolving
boundary layers since Cartesian mesh generally
does not allow the use of (wall-normal) high

aspect ratio cells at the wall
- wall-resolved simulations are too expensive

> Consider that for DNS Ng,.q4 ~ Re3”/1* and for LES Ng,.q ~ Re 137

Choi & Moin, 2011

» With Wall-modeled LES the grid resolution can be significantly reduced
W|th NGrid ~ Re,_

» Practical importance of wall-modeling in LES for high Reynolds number
flows (even for body-fitted meshes)



Viscous Wall Extensions @_f.?(z
Ghost Cell Method

J Ruffin and Lee (2009) combined IB ghost cell approach o | '"’Jé o | ol o
with standard k-¢ turbulence model by Launder and b\, gy
Spalding with Spalding's wall model formulation ¢ | e TI®
= Fair agreement for subsonic 2D and axisymmetric test « @ b éo) e | [®]
cases (flat plate & airfoil) ﬁ) ol 6 | @@
O Berger and Aftosmis (2012) combined Cartesian cut-cell T o S s
finite volume method with analytic wall model that is Taken from Kiris et al. (2016)

based on the Spalart-Allmaras turbulence model Cut Cell Method

= Good agreement for flow over a flat plate and sub- and
transonic airfoils

= Convergence of surface pressure Ax=0.1% X chord and
converged surface skin friction for 2-4 smaller grid
spacings

Taken from Tucker and Pan et al. (2000)



Viscous Wall Extensions ii%

Q Tamaki et al. (2017) developed an IBM for turbulent flow IBM for turbulent flows
simulations based on analytical S-A turbulence model
= Two key modifications of an earlier 2016 version: ”"\ | K X
(1) linearly extrapolate velocity of the forcing point to \ \ [ Fuid Cel
the wall and (2) modification of eddy-viscosity profile \\ el F\ \ \ | Boundary cen

to maintain balance of the shear stress

= good validation results against body-fitted results
for flat plate, NACAO0O012 airfoil, and turbulent flow
over bump in the channel

JBerger and Aftosmis (2017) followed up on previous work from 2012
= System of ODEs coupling the streamwise velocity and the turbulent viscosity replaced

analytic wall function
= Streamwise momentum equation included the pressure gradient and convection terms

= excellent comparison against body-fitted CFD results for 2D test cases even for y+ > 100.
O Another strategy is to couple the IB Navier-Stokes solver to an integral boundary layer

(IBL) method (sce breia (1987), Aftosmis (2006), Rodriguez (2012))

Taken from Tamaki et al (2017)
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Outline

Immersed Boundary Method (IBM)

Introducing conservative FD IB scheme.

11
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Basics of Stability Enhancement Approach

Uinitial observation: Selele
“Stability of numerical scheme can be formulated as sier 3lele
N-dimensional optimization problem” oo/ Qe
. . . o¢ ®
(N=number of irregular grid points) oo oo
U Derivation of stencil coefficients: :Ex E:
= Enforce order-of-accuracy 2o e
o6 0 [ 0 o EHHO00GHEs
Ti = ( ox T ox (ﬁ§> +f>xx; — (¢>BOC1 + $i0y + Pi103 + Pi20lg + Pi 305 + C) OO0
= Additional grid point is needed to introduce free parameter e Irregular grid point

= Objective function depends on the nature of the PDE, e.g., A, 5, O p(A)

O ()</> , 09 discr. o - A
ot x ()x</_> H = B¢" = A" +f

= Extract perturbation of irregular finite difference stencil (assume B=l)

A=EA; =25 p(E)<1

Brehm & Fasel (JCP, 2013, 2015), applications: Brehm, Barad, & Kiris (JCP 2018, IJFH 2017), Brehm, Barad, Housman & Kiris (JFM 2016) 12



Basics of Stability Enhancement Approach
(b) [ —
(@) — 1.1

Q. _1.0

v=0.9

LIL

/ll-

U Solving N-dimensional optimization problem is too expensive
W Apply localization of FD stencil which turns N-dimensional problem
= into N x 1-D problems (localization was demonstrated) erenm and Fasel (1cp, 2013)



Conservative Finite-Difference Method — Convective Terms @_f.?{é

 Conservative Finite Difference Operator:

of 1 Lz ; n—
% = A_x<hi+1/2 - hi—1/2) = A—x(fi+1/2 - fi—1/2) +0 (sz 1)

L Scheme relies on error cancellation

of _higip—hicip firi2 — fic1y (1)
* Numerical flux derivative at x;: or| _ Az - Az
. . : 1 0°f 5
= Truncation error obtaining flux at x,,1,  fiz1/2 = hiy1/2 — 60925 Az’ (scheme A) (2)
. .. ; 1 9°f 5
= Truncation error obtaining flux at x; 1/, Jici2 =hi—12 — 600 D5 Az (scheme B) (3)
= Substituting (2) and (3) in (1) leads to: of hiyi/2 —hi_1/2 3 0°f 4
il — — Ax
Ox|,_,. Az 200 Ox° ——

» To recover formal order-of-accuracy
match not only order but also leading

term of truncation error (erehm, icp 2017)
14



Conservative Finite-Difference Method — Convective Terms @_j%

U For third-order accurate scheme we implicitly define primitive function h(§) of flux
72 A 1 r+Axz/2
hz) =ho+ bz + ho— — f = —/ h(E)dE = ho + ...
2! Az x—Ax/2
e Use over-determined stencil to obtain free parameter
(Need to define appropriate interpolation operators at domain boundaries

y>0.5: y<0.5:
/2 #1/2 i#3/2 #S/2 i+7)2 i-1/2  i+1/2  i+3/2  i+5/2  i+7/2
H—eo—teo—{—o—f—o e
: i i+1 i+2 i+3 L i+1 i+2 i+3
a0 30

15



Conservative Finite-Difference Method — Convective Terms Ei%

O For third-order accurate scheme we use
72 A 1 r+Axz/2
hz) =ho+ bz + ho— — f = —/ h(E)dE = ho + ...
2! Az x—Ax/2
e Use over-determined stencil to obtain free parameter
(Need to define appropriate interpolation operators at domain boundaries

v>0.5: y<0.5:
ik1/2 i1/2 43/2 4572 72 i-1/2  i+1/2  i+3/2  i+5/2  i+7/2
H—e—1—eo—1o—|—0 Ho—t—o—f—o——e—|
: i i+1 i+2 i+3 i i+1 i+2 i+3
30 30 | |

regular upwind stencil at x;,3/,

16



Conservative Finite-Difference Method — Convective Terms

O For third-order accurate scheme we use
72 A 1 r+Axz/2
hz) =ho+ bz + ho— — f = —/ h(E)dE = ho + ...
2! Az x—Ax/2
e Use over-determined stencil to obtain free parameter
(Need to define appropriate interpolation operators at domain boundaries

v>0.5: v<0.5:
12 12 W3/2 W52 i+7/2 1/2 i#1/2 i#3/2  i#5/2  i+7/2
o—f—o—+4o—+e— oo O—f—o—|
Lo i+1 i+2 i+3 L i+1 | i+2 i+3
0Q 0Q
| | | |

irregular upwind stencil at x;1/, regular upwind stencil at x5/,

17



Conservative Finite-Difference Method — Convective Terms Ei%

O For third-order accurate scheme we use
72 A 1 r+Axz/2
hz) =ho+ bz + ho— — f = —/ h(E)dE = ho + ...
2! Az x—Ax/2
e Use over-determined stencil to obtain free parameter
(Need to define appropriate interpolation operators at domain boundaries

y>0.5: y<0.5:
/2 #1/2 i#3/2 #S/2 i+7)2 i-1/2  i+1/2  i+3/2  i+5/2  i+7/2
TH S - Jje e te e
: i 1o i+2 i+3 L i+1 | i+2 i+3
a0 30
I | I |
I

irregular upwind stencil at x;,,/, regular upwind stencil at x;,3/,

18



Conservative Finite-Difference Method — Convective Terms ii%

[ Conservative FD operator is derived such that
1) Accuracy constraints (for derivative D and appropriate interpolation Il operators)

ﬂ=2f+0(Axp) or f=1f+ 0(AxP)

0x
2) Telescoping derivative operator, D (“telescopes flux from boundary to boundary”)
Of —~ Fisher et al. (2012)
—-=Df=AF=ALf +0(AxP)
X
—1 1 0 0 0 07 [ A1 b1 C1 d1 0 07
0o -1 1 0 0 0 a, b, ¢ d 0 0
1o 0 -1 1 0 0 d p=|9 a b ¢ 0 0
8= o 0 0 =1 1 0 and D 0 0 a b ¢ O
0O 0 0 a b C
-0 0 0 o 0 -1 h R A .

with end point flux consistency 71/N= fl/N

19



Conservative Finite-Difference Method — Convective Terms

J Matrix Stability Analysis - Spectral radius of update matrix

- de 1 - :

EE = —EAE, with BC:  go(f) =0, andIC: ()= f(z;)
(I Stability regions for advection equation with advection speed c,

(using third-order accurate extrapolation operators)
y=0.0 i

y=1.0

Stability regions for -2

9%
at+cx

v=1.0 %_‘f+cx‘;_‘£=o with ¢, >0

Stability regions for
a_¢=0 with ¢, <0
0x




Conservative Finite-Difference Method — Viscous Terms @_j%

L Original Non-conservative approach:
pr+1

d(txy) dpdT [du v 0%u  9%v 09 2n
oy dT ay (5 5) T (8y2 * ayax) with 5 - Coabsn + ) Cirm-16itm-1 O(Ax )
m=1
2
82¢ P+ 82 ng—1+4np
o2 | = Coadoa + Y Ciym—1Piam—1+ O(AX*") and R 2092+ D Cinjmkn i jm kT O(AX™")

k m=1 IX0Y i jk m=1

= Velocity and temperature are provided 0€2

> Problem: How to provide viscous flux at the wall? ¢ 1/2) -O(AX?)

0x f I+ |
d Conservative approach _® o—jo—o—

d f 1 2 2 2
Ix A—X(fm/z — fic12) +O(AX n) % (i,j) | (i+1,])

= Need to compute viscous fluxes at faces I —e ® _ ‘_ ¢

= Treat viscous fluxes consistently at irregular faces (i.j+1) L('+1’J+1)

. . . —@ @ —@—
= Truncation error for all derivatives need to match (i+1/2,)
1 ?
9 Pt —o oe——o——o
x|, = Chodaq + mz_l Ci+m—1¢i+m—1+CAX2” (i,j-1) I(i+1,j-1) |




Conservative Finite-Difference Method — Viscous Terms @fﬂg

| \ WLSQR-point cloud for

. ... Immersed Boundary
Irregular faces in vicinity of IB ~\_~ derivative computation

N\

@ O © O

\

. . | I
W irregular faces in x \ \ /
FanY

_ _ e e e [ ¢
® irregular facesiny . \ ,
. r
—— immersed boundary , [ /

M irregular point
[ ] grid line intersection point
e point in fluid

O point in solid (dropped)

ey
-

W Viscous flux are computed at irregular faces and grid line intersection points (for wall-resolved)

L Using weighted-least squares stencils to compute derivatives at irregular faces

22



Finite-Difference IB Method — Turbulence Model ii%

3
[ Solve standard SA transport model v, =Ufy, fo1 = %
X + Ci!l
0 . 0 3 1 f d
L j 1+ x+ % otherwise.
Diffusion term Dissipation term
1 o \ 2 5 0% )2
D= |+ am) () +(v+vf(x>)—Z] p, = { Cwtfu(a) forx =0, and
o o0x; 0z} e 2 _
—Cyw1 (%) otherwise.
Production term
D — Cb1g5 for x > 0, and & QO+ S for S > —cyow, and
cp1§2gn U otherwise, Q4 (Q?C(cj’i;ccf)s_) 5 otherwise,

O Immersed boundary operators are the same as tor Navier-Stokes equations

** using new conservative formulation .



Outline

Viscous Wall Model (VWM)

Discussion of different viscous wall modeling approaches.

24



Wall Modeling Approaches — Near-wall analytical solution Ei!jg

dBoundary layer simplification for x-momentum equation, i.e., simple diffusion equation and
mixing length assumption for turbulent viscosity

d du du ~ T
@[(I/—FW)@]:O, or (V—|-l/t)@:u72_ V= Kury = KVY

Uintegrating and manipulating terms gives the following analytical expression

ut = B4cilog((yt +a1)?+b3) —cplog((y™ +ag)?+b3) —cs arctan(y™ +ay, b)) —cq arctan(y™ +ag, bo)

0.004 ¢
. . 0.0035F
JAnalytical SA wall function constants 0,003 CFLID
L0sp - - - - Plane 3 (SA)
Plane 2 (SA)
P 0.0025F ___ __ ane
B =5.03339088, a; = 8.14822158, ag = —6.92870938, N Plane 1(SA)

by = 7.46008761, by = 7.46814579, c; = 2.54967735, 0.0015
ca = 1.33016516, c3 = 3.59945911, ¢4 = 3.63975319, 0.001

0.0005
0

25



Wall Modeling Approaches — ODE-based wall model @_f.?(z

L We include streamwise pressure gradient and convective terms to capture greater physics

0 ou\ O du  Ou 0094

Dt 2] = Ll [ugs + o

0y 0y ox oz oy | i 0.003k CFL3D
— ) oues|, Pz coEcom

Diffusion only models 0.002}

QEmpirical cutoff function for convective terms along the ray, 9015

using the velocity derived from analytical wall function, 0.001F
previously described — waslu 0.0005}
¥ (y) SA/UF ok .

Solve a simplified SA model - neglecting streamwise gradients
0 (v + 5) o 1 ov 82~
Tl = =
Oy Oy o

2
1+c — | +(wv+vr —
(1) (g )+ w2700V
Second-order central FD scheme, inverted via Newton iteration (with exact linearization)
Berger and Aftosmis (2017)




Outline

IBM & VWM Coupling

Introduces basic idea of immersed boundary method.

27



IBM-VWM Coupling Y

Q Within Q,,,,, domain, wall model is

Owm assumed to provide valid flow information
- ¢ g ey ’ Q. (enlarged) Q Important to provide smooth transition
s N ¥ between Q,,,,and Q;
EREER \ N [ Strong interplay between numerical
Qr T implementation details of IBM and wall
N model is expected

 Grid resolution at boundary layer edge is
crucial (see also Spalart 2015 on

Q.. approximate boundary layer solution domain ) ]
PP y turbulence modeling for body-fitted mesh)

O Cartesian grid solution domain

O Simplistic way of viewing the viscous wall effects -- flow partially slips past wall:
(1) Supply the “right” force to the under-resolved flow to control BL growth
(2) Obtain friction force on immersed geometry = requires some type of wall model

28



IBM-VWM Coupling — Approximate BL Solution Domain ii%

UWM solved along rays with constant 6,

irregular point cloud

= Directional/wall-normal distances vary non-
smoothly causing oscillations

= WNMs display dependencies on wall distances
where external flow data is provided

| (WM is solved as BVP (BCs at y,=0 & y,=6,,m)
O Transfer of data between Q,,,and C;:

(1) flow data is interpolated to FP
(2) WM solution is transfer to IB solver at GLIP
O WLSQR stencil cloud provides flow data at y,=3,,,

lllustration of coupling between wall
modeling approaches and IB solver » data needed depends on wall model

FP: forcing point = with this data WM solution can be obtained

GLIP: gridline intersection point
29



IBM-VWM Coupling — Cartesian Grid Solution Domain ii.%

u(y) WM solution data needs to be fed back to Cartesian grid solver
- U Boundary conditions for Cartesian solver are provided at GLIPs
>/ U Linearly extrapolate velocity to the wall and use as slip-wall
o ﬁ‘F velocity (uy.)
A — >/ = Dissipation from convective flux will be introduced
y ] > /,/" depending on numerical flux and discretization scheme
777727 777
Upc

U Viscous flux at GLIP is obtained from t,, which is obtained from WM
= Rotate viscous flux from wall-aligned coordinate system into Cartesian coordinate system
= assuming that all diagonal components of stress tensor are small

= QOtherirregular fluxes use slip-velocity to compute velocity derivatives
[ Pressure is assumed to stay constant through boundary layer

30



IBM-VWM Coupling — Cartesian Grid Solution Domain

How to obtain eddy viscosity at GLIP?

v(y)

8v,mz X

Y] ,

d

v(y)

/

dv
dyr

|
S S S S

~

Vw

 Eddy viscosity is obtained in similar way as slip-velocity

/
IS S S S

e e

Vw

= Linearly extrapolate eddy viscosity if y, < 0, nax

= Use Vmax if Yn > 6v,max

31



Outline

Validation Study

Validation of newly developed method.

32



Validation Results — Bump in Channel @gg

Block-Structured Cartesian Mesh

Bump in Channel (Re=3x10°)

|| U_=69.46 m/s 0.2 |

0.6 | p_-68626 Pa E 03
L | T_=300K 0.8 -

0al|v=3% m/s .

0.

0.2 __

: A Q ‘ ‘!-‘!-[u‘u!"!m’,!‘!-‘!‘%.MH.[H}..!‘ 'i’ *L"it J '!“{] kjhiHh ’i il 'i"i’ *ii ,i‘.I.‘!‘.I.!‘!..!.!.}.,!‘!.I.‘!.I.!‘
070 05 , | 1.5

O Assess a flow with non-zero pressure gradients from NASA TMR website*

O Inlet/Outlet, no-slip from x=0 to x=1.5 (symmetry prior)
O Symmetry top-wall

*https://turbmodels.larc.nasa.gov/
33



Validation Results - Bump in Channel (Standalone)

Analytical SA-based WM ODE-based WM

I FV-Unst 0.008 F FV-Unst

.oo8+ - ___ Plane 3 (SA) ' - e Plane 3 (ODE)
' Plane 2 (SA) i Plane 2 (ODE)
i ———————— Plane 1 (SA) i e Plane 1 (ODE)
R 0.006

0.002
Plane d U o 1 Reference solution at several constant y* planes taken as input
|1 2% 103 ] 3299 into standalone wall-model
2 1x1072 | 164.6 [ Differences in ODE based wall model and analytical SA model
3 5x 1074 82.3

 Less effective y* sensitivity for ODE model

34



Validation Results - Bump in Channel (Standalone)

Analytical SA-based WM

ODE-based WM (include CV and PG terms)
0.008_—

FV-Unst 0.008 | FV-Unst
_____ Plane 3 (SA) ' | - - - - - Plane 3 (ODE-conv)
I Plane 2 (SA) |
i ——m—m Plane 1 (SA)
[l
L

Plane 2 (ODE-conv)
Plane 1 (ODE-conv)

O Including pressure gradient and convective terms improves
2 1x1072% | 164.6 accuracy and reduces y* sensitivity

35



Validation Results — Bump in Channel (Fully Coupled) Ei!jg

Pressure distribution Skin friction curves
- dx=4x10': 0.01~
3 giffi}g.s Tl . dx=4x10°
08k = ! . dx=2x10" +—160-
08 CFL3D 0.008F ) d§=1:10'3 ) 160 660
: CFL3D
0.006
w5 %
0.004f
0.002}
09 05 1 15

O Fully-coupled results with ODE wall-model demonstrate very good
agreement for y*=160, although higher y* values remain a challenge

36



Validation Results — Bump in Channel ii%

Streamwise Velocity Profile Eddy Viscosity
: | 02,
0.05F —  cFuaDp 0021
— [ mmm- - CFL3D
o BM-VIWM (ODE) i IBM-VWM (ODE
0.04r 0.015} (OP5)
0.03f |
S > 0.01]
0.02F _
0.01} 0.005}
02620 60 80 ol —_
0 50 100

u-velocity L
t

1 Good comparison between IBM-VWM and CFL3D at x=0.75
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Validation Results — Bump in Channel

Streamwise Velocity Profile

0.03r
: IBM-VWM (ODE)
| mmm- - CFL3D
0.02
N
0.01}
O— T

0 20 40 60
u-velocity

80

0.02}

0.01}

Eddy Viscosity

IBM-VWM (ODE)
------ CFL3D

L 1 L

100 200 300
My

1 Good comparison between IBM-VWM and CFL3D at x=1.2
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Validation Results — NACA0012 [@gg
NACA0012 (Re=6x10°) Block-Structured Cartesian Mesh

0.5

>0

-0.5

-0.5 0 0.5 1

X
[ Assess a higher Reynolds number case with variable AoA from NASA TMR website*
O No-slip on wall, farfield conditions 500xC away
U Stepping-stone for more complex aerospace cases

*https://turbmodels.larc.nasa.gov/ .



Validation Results — Wall Model Only

0.006F

0.005}
B.004
0.003
0.002
0.001

0 02 04
Plane d Y o
1 2x 1073 572
2 1x10°3 286
3 5x 104 143

FV-Unst FV-Unst
- Plane 3 (SA) 0005/  ----- Plane 3 (ODE)
Plane 2 (SA) i Plane 2 (ODE)
----- Plane 1 (SA) 0.004 Plane 1 (ODE)
Ty
0.003
0.002}
0.001F
[ T IR iIJ\I\\IIIIJI\\\IIII
0.6 0.8 0 0.2 0.4 0.6 0.8
X X

1 Reference solution at several constant y* planes taken as input
into standalone wall-model

O SA analytical model over-predicts skin-friction but ODE more
consistent and trending towards correct profile
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Validation Results — NACA0012 - Fully Coupled @_f.?{é

Skin friction curves Pressure distribution
0.0087 . dx=4.5x10" 0.5 i
. dx=9.0x10" i
- . dx=1.8x10" :
0.006_ —  CFL3D i
OH

G 0.004F S . dx=4.5x10"

. dx=9.0x10"

0.5 - dx=1.8x10"

0.002 ——— CFL3D
O "o 05 1
X

 Excellent agreement for C,, more challenging for C; but agreement is promising
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Validation Results
SA-based WM

0.007 —— |
_ e grid1,dx=1.8e-3
" grid 2, dx =9e-4
A A ‘ grid 3! dx - 4.58-4:
0.006 &, ——— CFL3D ]
o
0.005F ]
i .““
0.004 — , 3#1,

ks

ODE-based WM

0.007 —

0.006

0.005

0.004L

! | ' ! ' ' 1
grid 1, dx = 1.8x10° 1
grid 2, dx = 9.0x10™ |
grid 3, dx = 4.5x10™ |
CFL3D |

¢, in the back is well captured on coarsest mesh

Uc; peak increases progressively with increasing grid resolution

(JODE-based wall model seems to align more closely (in agreement with standalone results)

42



NACA0012 at 10 AoA Y

) SA-based WM | ODE-based WM
0.0158% . dx=2x10%(sA) 0.015F . dx=2x10° (ODE)
o - dx=1x1073 (SA) | - dx=1x10"3 (ODE)

. dx=5x10 (SA)

-
4 * dx=5%10"* (ODE)
0 O-I :_ * FV-Unst.

&
0.005
i\ . 1 .
: 0O 0.5
X X
Plane d ydl_;.:odg . .
L l2x10-2] 572 ( Run at 10 AoA to obtain greater pressure gradient effects
2 | 1x1073 | 286  Clear improvement for ODE model — less sensitivity to
3 |5x107"] 143 the effective y* location
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NACAO0012 at 10 AoA

) SA-based WM ODE-based WM + Conv
0.0158% . dx=2x10%(sA) 0.015f.  dx=2x10° (ODE)
- dx=1x1073 (SA) dx=1x10"3 (ODE)
+ dx=5x10" (SA) \ dx=5x10 (ODE)
0.01 0.01}};  Fv-unst
o o ;
0.005f N 0.005
Og 05 Og 05
X X

M Including convective and pressure gradients brings the agreement much closer -
expectation to see even stronger dependency for more complex flows with strong
pressure gradient and convective terms

ks
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Sensitivity to Incorrect Input Data ii%

Fully-Coupled Standalone
v, Type A L
° " Typ B 0.006[ 'I:?\Ilarl;j: Zt(wnn) i
0005 n VW ype ————— Plane2gwm;+55(:);/omut:
e Plane 2 -50% mut |
.:. CFL3D 0.005} .

0.004 |
0.004

© 0.003 ©0.003}

0.002

0.002}

type A: regular procedure
type B: reduce v,, by factor 2

0.001

0.001 |

o 05 1 0 02 04.06 08
X X
U Effect of an error in the SA field variable vat forcing location

U Significant effect of v,, on skin friction data (v,,/2 reduces ;)

1 standalone simulation reproduces this effect on skin-friction
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Coupling Effects

Fully-Coupled
. TeB
_Type
0.005 CFL3D

b type A: regular extrapolation
8 type B: use gradient at d=80%0,,,

0 05
X

1

Standalone

0.006k

0.005

0.004 ¢

©0.003
0.002|
0.001}

FV-Unst
Plane 2 (WM)

~J

‘‘‘‘‘
~.,

~.,
~.,
S~
T
~,

"~
~.,

U Sensitivity of ¢, w.r.t. an error in the velocity

U type B boundary condition reduces slip velocity and, thus, skin friction coefficient

o I

 standalone simulation reproduces this effect on skin-friction

Note: Uses slightly different viscous discretization scheme.

Ne ————. Plane 2 (WM) +5% U |
N Plane 2 (WM) -5% U




Coupling Effects @E%
Fully-Coupled ____Standalone
- v, Type A 0.006 IL:I\;-I:Jen;t(WM) .

_____ Plane 2 (WM) +20% Distance -
S Plane 2 (WM) -20% Distance |

0.005

N 0.005}/\
0.004 ™ |
0.004

© 0009 ©0.003}

0.002 0.002}

0.001

type A: conservative discr.
type B: non-conservative discr.

0.001}

0 0.5 1 0 02 04._06 08
X X
O Shows effect of different viscous flux implementations
O Problem with viscous discretization type B is that skin friction at the wall is enforced indirectly
= Utilizing shear stress from wall model following constant shear assumption

[ Change of wall distance by 20% of its true value has significant effect on skin-friction
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Outline

Final Discussion and Conclusion

What is the current state and what is next? Additional Challenges.
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Summary and Conclusions @g(%

[ Clear sensitivity of IBM-VWM results to WM formulation (even for attached flows)
= |nclusion of pressure term
= |mprovement of modeling eddy viscosity

1 Coupling influences can be significant
= High sensitivity to errors in input data — still not fully understood at this point
= depend on details of the underlying numerical schemes

[ Conservative viscous discretization scheme significantly improves IBM-VWM results
= this is essentially a new IBM

1 Good agreement for test cases up to around y*=200 (significant step up from before)

A High-lift common research model (wing area=197m?, Axy+=1=2><10‘5m)
» Body-fitted mesh 80-240x10° with (180x10°in prism layers) ashton et al. (AlAA 2018)
= Rough estimate for y*=200 gives 120-200x10° (where y*=100 gives 4x, or y+=1 0(10%?)

» IBM does not require grid generation and reduces operation count
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Thank you for your attention.

UNIVERSITY OF

OXFORD

Any questions?

Thanks to LAVA team members of NASA Ames Research
Center, in particular C. Kiris, M. Barad, and J. Housman;
interaction on development of Cartesian Grid Methods
has been invaluable

C. Brehm and N. Ashton, “Progress in the development
of an immersed boundary method with viscous-wall
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