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Overview of AMReX
• AMReX is an ECP-funded software framework to 

support the development of block-structured AMR 
applications for current and next-generation 
architectures

• Written in a mix of C++/Fortran

• Allows for a variety of algorithms, discretizations, and 
numerical approaches

• Supports a variety of programming models - MPI, 
OpenMP, Hybrid, MPI+MPI, and (increasingly) GPUs

• Provides the framework for many different application 
codes in combustion, astrophysics, accelerator 



AMR Co-design Center
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Introduction to Block-Structured AMR

• Say you want to solve a system of time-dependent PDEs. 
If you had infinite compute power (and memory), you 
could discretize the equations on a uniform mesh and 
advance the solution in time with a fixed dt.

• Domain decomposition and parallelization could be done 
in a straightforward way
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Solution of Time-Dependent PDE’s

You could use domain 
decomposition to break the 
domain into smaller grids to 
distribute to MPI processes.

End of story.    

Suppose you want to solve a single system of time-dependent PDEs in a regular 
domain.

With unlimited resources – both computational 
time and memory – you could discretize the PDE 
on a uniform structured grid and use a fixed-in-
time-and-space time step to advance the 
solution.

Unew[i][j] = Uold[i][j] + speed * dt



Introduction to Block-Structured AMR
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Solution of Time-Dependent PDE’s (p2)

However, most problems you want to solve aren’t that simple:

• You will probably need some type of adaptivity –
changes in the mesh due to the geometry or the 
solution or both

You may not want to solve it in a regular domain:
• Complex domain boundaries
• Complex material boundaries

• Multiphysics – more than one physical process
• Multirate – different time scales
• Multiscale     – different spatial scales

And, unfortunately, you don’t have unlimited resources.

• Most problems are more 
complicated

• Multi-physics
• Multi-scale (time and 

space

• Might have complex boundaries that make a 
regular domain impractical

• And, you don’t have unlimited resources
• Some form adaptivity is often needed to 

reduce memory footprint and compute cost



In block-structured AMR, the solution is defined on a hierarchy 
of levels of resolution, each of which is composed of a union of 
logically rectangular grids

Maintains many of the nice 
features of uniform meshes: 
• Connectivity is simple - uniform 

index space, even with AMR 
• High-order methods
• Ease of vectorization, 

hierarchical parallelism

• Patches change dynamically
• Oct-tree refinement with fixed size 

grids is special case
• More generally, patches may not be 

fixed size and may not have unique 
parent

Introduction to Block-Structured AMR



Example: RNS simulation of Hydrogen / Air Flame

Image courtesy of Emmanuel Motheau
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IntVect and Box

• Represent regions in an integer index space

• Box has notion of IndexType for representing nodal data:

– IntVect represents a point
– Box represents region covered by a patch
– Coarsening / Refinement operators for both



BoxArray and DistributionMapping

• BoxArray stores a collection of boxes on single level

• DistributionMapping maintains an mapping between Box 
and MPI process. 

– All Boxes in a BoxArray share IndexType, methods for converting
– methods for chopping, coarsening, refining
– Internally uses std::shared_ptr to save memory
– provide optimized functions for finding intersections

0

2

1

3– Also has shared_ptr implementation
– Several options for process assignment: 

             knapsack, space-filling curve, manual



Mesh data: FArrayBox, IArrayBox

• Store multi-dimensional arrays of mesh data associated 
with a single Box.

• Can be real, integer or other (implemented with 
templates)

• Data is stored in column-major order for ease of 
processing by Fortran subroutines



Distributed mesh data: MultiFab, IMultiFab

• Store arrays of mesh data associated with a BoxArray 
and DistributionMapping.

• Data is distributed. 
• Provide parallel copy routines, ghost cell filling, all 

handled by the library.
• Knows how to handle all the different IndexTypes, 

overlapping BoxArrays, etc...



Iterating over MultiFabs

• MultiFabs can be operated on using add, divide, saxpy, 
etc..

• Also provide MFIter for looping over the FArrayBoxes in a 
MultiFab.

• Each proc loops only over the data it owns, details are 
hidden in application code
for (MFIter mfi(mf); mfi.isValid(); ++mfi) 
{ 
    const Box& box = mfi.validbox(); 
    FArrayBox& fab = mf[mfi]; 
    Real* a = fab.dataPtr(); 
    const Box& fbox = fab.box(); 
    f1(box.loVect(), box.hiVect(), a, fbox.loVect(), fbox.hiVect()); 
} 



Logical Tiling and MFIter

• Well-known loop transformation technique that improves 
data locality 

• Convert single loop into two nested loops - one over tiles, 
and one over the data elements within a tile.

• Logic is baked into the iterator 
// * true *  turns on tiling 
for (MFIter mfi(mf,true); mfi.isValid(); ++mfi) // Loop over tiles 
{ 
    // tilebox() instead of validbox() 
    const Box& box = mfi.tilebox(); 

    FArrayBox& fab = mf[mfi]; 
    Real* a = fab.dataPtr(); 
    const Box& abox = fab.box(); 

    f1(box.loVect(), box.hiVect(), a, abox.loVect(), abox.hiVect()); 
} 



Logical Tiling and MFIter, continued

• Difference between valid and tile boxes for cell-centered 
Boxes (handles other types too)

• Tiling is purely logical - data layout in memory is unchanged



Logical Tiling, single core performance

1 core of 
Edison
128^3 
domain

Courtesy of Weiqun Zhang, Didem Unat and Tan Nguyen



Logical Tiling and OpenMP

• In addition to improving single-node performance, tiling 
provides a basis for hierarchical parallelism

• MFIter knows when its constructed in parallel region, 
details again hidden in application code

• Support for static and dynamic scheduling
#ifdef _OPENMP 
#pragma omp parallel 
#endif 
for (MFIter mfi(mf,true); mfi.isValid(); ++mfi) 
{ 
    const Box& box = mfi.tilebox(); 

    FArrayBox& fab = mf[mfi]; 
    Real* a = fab.dataPtr(); 
    const Box& abox = fab.box(); 

    f1(box.loVect(), box.hiVect(), a, abox.loVect(), abox.hiVect()); 
} 



Logical Tiling and OpenMP

1 node of Edison (12 
cores)

1 node of Babbage (60 
cores)

Courtesy of Weiqun Zhang, Didem Unat and Tan 
Nguyen



• Interpolation / Restriction

• Flux Registers 
– Used to store data on coarse / fine interfaces
– Used to enforce conservation for
– e.g. hyperbolic systems

• Tagging / Regridding

Multi-level Tools

– Filling boundary conditions on fine levels from coarse level data
– Representing fine solution on the coarse level

– Accumulate sets of points
– Generating BoxArrays 

that cover those points



Subcycling in time

• Sometimes, you might want to advance the levels with 
different time steps

• AMReX supports time-stepping approaches with or 



Particles in AMReX

• Another core data type is the particle. In AMReX, particles 
live on and interact with an adaptive hierarchy of meshes.

• Additional challenges:

• Several different kinds of applications:

– Inherently irregular - amount of data varies
– Connectivity is hard, e.g. finding neighbors.
– Always changing, data structures adapt every time step or more

– Passive tracers
– Particle-in-cell (electro-magnetic, dark matter, drag)
– Particle-particle, particle-wall collisions



Flexible data layout

• Quantity, type of particle data varies
• Array-of-structs versus Struct-of-Arrays



The ParticleContainer

• Particles are stored in a ParticleContainer, using stl 
containers. Particle type itself is handled using templates:

• Parallel Communication handled under the hood via 
Redistribute() routine. 

• Flexible enough to support sub-cycling.
• “Ghost particles” for representing fine data on the coarse 

level.
• “Neighbor particles” for when you need to access 

particles on other MPI processes

typedef ParticleContainer<1, 2, 2, 2> MyParticleContainer; 



The ParticleContainer

• AMRex provides several useful routines:

• Particle struct is POD and compatible with Fortran via 
iso_c_binding: use amrex_fort_module, only: amrex_particle_real 

use iso_c_binding ,    only: c_int 

type, bind(C)  :: particle_t 
   real(amrex_particle_real) :: pos(3) 
   real(amrex_particle_real) :: mass 
   integer(c_int)   :: id 
   integer(c_int)   :: cpu 
   integer(c_int)   :: phase 
   integer(c_int)   :: state 
end type particle_t 

– Advection on a MAC or cell-centered velocity grid
– Single and multi-level PIC interpolation, deposition
– Cell linked lists, neighbor list



The ParIter

• Particle data can be iterated over much like the mesh 
data

• Aware of tiling (not logical any more), OpenMP.const int lev = 0; 
#ifdef _OPENMP 
#pragma omp parallel 
#endif 
for (ParIter pti(*this, lev); pti.isValid(); ++pti) 
{ 
    const auto np = pti.numParticles(); 

    auto& array_of_structs = pti.GetArrayOfStructs(); 

    auto& struct_of_arrays = pti.GetStructOfArrays(); 
    auto& ux               = struct_of_arrays[PIdx::ux  ]; 
    auto& uy               = struct_of_arrays[PIdx::uy  ]; 
    auto& uz               = struct_of_arrays[PIdx::uz  ]; 
    auto& ginv             = struct_of_arrays[PIdx::ginv]; 

    set_gamma(np, ux.data(), uy.data(), uz.data(), ginv.data()); 

    push_position_boris(np, particles.data(), 
                        ux.data(), uy.data(), uz.data(), ginv.data(), dt); 
} 



OpenMP scaling of particles on Cori KNL



Load Balancing with particles

• Particle data introduces an additional challenge to load 
balancing.

• If you have a significant amount of particle work, number 
of cells is not a good estimate any more.

• Can use work estimates based on number of cells plus 
number of particles, but doesn’t work for all applications 
(e.g. Monte Carlo).

• In some applications we use real time measurements to 
estimate the work distribution

• Dynamic scheduling of OpenMP threads can also help



Load Balancing with particles

Figure courtesy of Remi Lehe



Weak scaling: run time

Before optimization

After optimization

32 ppc, 64^3 cells/node 0 ppc, 256^3 cells/node

Before optimization

After optimization

a) b)

Weak scaling: run time

Before optimization

After optimization

32 ppc, 64^3 cells/node 0 ppc, 256^3 cells/node

Before optimization

After optimization

Weak scaling with particles

Courtesy of Maxence Thévenet 



Fluid riser (drag forces, particle-particle work)



• Use a cut cell approach to complex geometries. 
• Still block-structured, but cells labelled covered, 

cut, or regular
• Within an MFIter loop, ask whether the tile 

contains any cut cells. 
• If not, treat in normally. 
• If it does, pass in extra geometric, connectivity 

information.
• All data structures fully inter-operable with 

Fortran
• Connectivity info for all 27 potential neighbors is 

stored in a single integer.
• Doesn’t sacrifice essential regularity far from 

domain boundaries.
• Much more work to do near boundaries, benefits 

from dynamic OpenMP scheduling

Plasma Wakefield Accelerator 
Nozzle

Embedded Boundaries



Embedded Boundaries with particles

• Level set approach used to 
compute whether particles collide 
with walls

Courtesy of Johannes Blaschke



Linear solvers

• AMReX provides native geometric Multigrid solvers for 
parabolic and elliptic systems.

• Cell-centered and node-centered data. 
• Single level and multi-level AMR 
• Box agglomeration to avoid coarsening limitations
• Current work - extension to EB, which makes the bottom 

solve much more complex



Visualization and IO

• In-house data format 
with efficient parallel I/
O for both restart and 
plotfiles (has been 
much faster than HDF5 
… although that is 
changing)

• Visualization format 
supported by Visit, 
Paraview, yt

Image courtesy of 
Maxence Thévenet 



Interfacing with other Libraries

• SUNDIALS ODE solvers
• Hypre, HPGMG solvers
• FFTW and other FFT libraries
• In-situ and in-transit analytics - Sensei, ALPINE, Henson
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Example Applications

Astrophysics Multiphase Flow

Particle Accelerators Cosmology FLASH

Combustion



Application Requirements

Particles ODE’s Linear 
Solvers

EB

Combustion X X X X

Multiphase X X X X

Cosmology X X X

Astrophysics X X

Accelerators X
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New architectures and programming models

• Much current work focuses on porting AMReX to GPUs
• Cuda’s Unified Memory for data motion
• Kernels offloaded through a variety of strategies

• NVIDIA’s thrust library for sorting and searching 
(particles)

• Mini-App versions of Castro hydro (StarLord) and WarpX 
(Electromagnetic PIC) exist 

• Approaches to parallelism other than MPI+OpenMP: 

– CUDA C/Fortran
– OpenACC
– OpenMP
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Open source development model

• AMReX and many application codes available on Github:

• All branches public. Bleeding edge development branch, 
merged into master monthly.

• Sphinx, doxygen documentation hosted on Github pages, 
auto-generated with Travis

• Tutorials live in main code repository
• Issues, pull requests welcome (bug fixes, new features, 

documentation, etc...) 

https://github.com/AMReX-Codes/amrex

https://github.com/AMReX-Codes/amrex


Nightly regression testing



Questions?


