
Introduction to AMReX - a new framework for block-
structured adaptive mesh refinement calculations

Andrew Myers
Lawrence Berkeley National Laboratory

Advanced Modeling and Simulation Seminar Series
NASA Ames Research Center

July 3, 2018

Outline

1. Overview of AMReX

2. Introduction to block-structured AMR

3. What tools does AMReX provide?

4. What can you build these tools?

5. Current development directions

6. Where to find more

Outline

1. Overview of AMReX

2. Introduction to block-structured AMR

3. What tools does AMReX provide?

4. What can you build these tools?

5. Current development directions

6. Where to find more

Overview of AMReX
• AMReX is an ECP-funded software framework to

support the development of block-structured AMR
applications for current and next-generation
architectures

• Written in a mix of C++/Fortran

• Allows for a variety of algorithms, discretizations, and
numerical approaches

• Supports a variety of programming models - MPI,
OpenMP, Hybrid, MPI+MPI, and (increasingly) GPUs

• Provides the framework for many different application
codes in combustion, astrophysics, accelerator

AMR Co-design Center

Outline

1. Overview of AMReX

2. Introduction to block-structured AMR

3. What tools does AMReX provide?

4. What can you build these tools?

5. Current development directions

6. Where to find more

Introduction to Block-Structured AMR

• Say you want to solve a system of time-dependent PDEs.
If you had infinite compute power (and memory), you
could discretize the equations on a uniform mesh and
advance the solution in time with a fixed dt.

• Domain decomposition and parallelization could be done
in a straightforward way

ATPESC 2017, July 30 – August 11, 20173

Solution of Time-Dependent PDE’s

You could use domain
decomposition to break the
domain into smaller grids to
distribute to MPI processes.

End of story.

Suppose you want to solve a single system of time-dependent PDEs in a regular
domain.

With unlimited resources – both computational
time and memory – you could discretize the PDE
on a uniform structured grid and use a fixed-in-
time-and-space time step to advance the
solution.

Unew[i][j] = Uold[i][j] + speed * dt

Introduction to Block-Structured AMR

ATPESC 2017, July 30 – August 11, 20174

Solution of Time-Dependent PDE’s (p2)

However, most problems you want to solve aren’t that simple:

• You will probably need some type of adaptivity –
changes in the mesh due to the geometry or the
solution or both

You may not want to solve it in a regular domain:
• Complex domain boundaries
• Complex material boundaries

• Multiphysics – more than one physical process
• Multirate – different time scales
• Multiscale – different spatial scales

And, unfortunately, you don’t have unlimited resources.

• Most problems are more
complicated

• Multi-physics
• Multi-scale (time and

space

• Might have complex boundaries that make a
regular domain impractical

• And, you don’t have unlimited resources
• Some form adaptivity is often needed to

reduce memory footprint and compute cost

In block-structured AMR, the solution is defined on a hierarchy
of levels of resolution, each of which is composed of a union of
logically rectangular grids

Maintains many of the nice
features of uniform meshes:
• Connectivity is simple - uniform

index space, even with AMR
• High-order methods
• Ease of vectorization,

hierarchical parallelism

• Patches change dynamically
• Oct-tree refinement with fixed size

grids is special case
• More generally, patches may not be

fixed size and may not have unique
parent

Introduction to Block-Structured AMR

Example: RNS simulation of Hydrogen / Air Flame

Image courtesy of Emmanuel Motheau

Outline

1. Overview of AMReX

2. Introduction to block-structured AMR

3. What tools does AMReX provide?

4. What can you build these tools?

5. Current development directions

6. Where to find more

IntVect and Box

• Represent regions in an integer index space

• Box has notion of IndexType for representing nodal data:

– IntVect represents a point
– Box represents region covered by a patch
– Coarsening / Refinement operators for both

BoxArray and DistributionMapping

• BoxArray stores a collection of boxes on single level

• DistributionMapping maintains an mapping between Box
and MPI process.

– All Boxes in a BoxArray share IndexType, methods for converting
– methods for chopping, coarsening, refining
– Internally uses std::shared_ptr to save memory
– provide optimized functions for finding intersections

0

2

1

3– Also has shared_ptr implementation
– Several options for process assignment:

 knapsack, space-filling curve, manual

Mesh data: FArrayBox, IArrayBox

• Store multi-dimensional arrays of mesh data associated
with a single Box.

• Can be real, integer or other (implemented with
templates)

• Data is stored in column-major order for ease of
processing by Fortran subroutines

Distributed mesh data: MultiFab, IMultiFab

• Store arrays of mesh data associated with a BoxArray
and DistributionMapping.

• Data is distributed.
• Provide parallel copy routines, ghost cell filling, all

handled by the library.
• Knows how to handle all the different IndexTypes,

overlapping BoxArrays, etc...

Iterating over MultiFabs

• MultiFabs can be operated on using add, divide, saxpy,
etc..

• Also provide MFIter for looping over the FArrayBoxes in a
MultiFab.

• Each proc loops only over the data it owns, details are
hidden in application code
for (MFIter mfi(mf); mfi.isValid(); ++mfi)
{
 const Box& box = mfi.validbox();
 FArrayBox& fab = mf[mfi];
 Real* a = fab.dataPtr();
 const Box& fbox = fab.box();
 f1(box.loVect(), box.hiVect(), a, fbox.loVect(), fbox.hiVect());
}

Logical Tiling and MFIter

• Well-known loop transformation technique that improves
data locality

• Convert single loop into two nested loops - one over tiles,
and one over the data elements within a tile.

• Logic is baked into the iterator
// * true * turns on tiling
for (MFIter mfi(mf,true); mfi.isValid(); ++mfi) // Loop over tiles
{
 // tilebox() instead of validbox()
 const Box& box = mfi.tilebox();

 FArrayBox& fab = mf[mfi];
 Real* a = fab.dataPtr();
 const Box& abox = fab.box();

 f1(box.loVect(), box.hiVect(), a, abox.loVect(), abox.hiVect());
}

Logical Tiling and MFIter, continued

• Difference between valid and tile boxes for cell-centered
Boxes (handles other types too)

• Tiling is purely logical - data layout in memory is unchanged

Logical Tiling, single core performance

1 core of
Edison
128^3
domain

Courtesy of Weiqun Zhang, Didem Unat and Tan Nguyen

Logical Tiling and OpenMP

• In addition to improving single-node performance, tiling
provides a basis for hierarchical parallelism

• MFIter knows when its constructed in parallel region,
details again hidden in application code

• Support for static and dynamic scheduling
#ifdef _OPENMP
#pragma omp parallel
#endif
for (MFIter mfi(mf,true); mfi.isValid(); ++mfi)
{
 const Box& box = mfi.tilebox();

 FArrayBox& fab = mf[mfi];
 Real* a = fab.dataPtr();
 const Box& abox = fab.box();

 f1(box.loVect(), box.hiVect(), a, abox.loVect(), abox.hiVect());
}

Logical Tiling and OpenMP

1 node of Edison (12
cores)

1 node of Babbage (60
cores)

Courtesy of Weiqun Zhang, Didem Unat and Tan
Nguyen

• Interpolation / Restriction

• Flux Registers
– Used to store data on coarse / fine interfaces
– Used to enforce conservation for
– e.g. hyperbolic systems

• Tagging / Regridding

Multi-level Tools

– Filling boundary conditions on fine levels from coarse level data
– Representing fine solution on the coarse level

– Accumulate sets of points
– Generating BoxArrays

that cover those points

Subcycling in time

• Sometimes, you might want to advance the levels with
different time steps

• AMReX supports time-stepping approaches with or

Particles in AMReX

• Another core data type is the particle. In AMReX, particles
live on and interact with an adaptive hierarchy of meshes.

• Additional challenges:

• Several different kinds of applications:

– Inherently irregular - amount of data varies
– Connectivity is hard, e.g. finding neighbors.
– Always changing, data structures adapt every time step or more

– Passive tracers
– Particle-in-cell (electro-magnetic, dark matter, drag)
– Particle-particle, particle-wall collisions

Flexible data layout

• Quantity, type of particle data varies
• Array-of-structs versus Struct-of-Arrays

The ParticleContainer

• Particles are stored in a ParticleContainer, using stl
containers. Particle type itself is handled using templates:

• Parallel Communication handled under the hood via
Redistribute() routine.

• Flexible enough to support sub-cycling.
• “Ghost particles” for representing fine data on the coarse

level.
• “Neighbor particles” for when you need to access

particles on other MPI processes

typedef ParticleContainer<1, 2, 2, 2> MyParticleContainer;

The ParticleContainer

• AMRex provides several useful routines:

• Particle struct is POD and compatible with Fortran via
iso_c_binding: use amrex_fort_module, only: amrex_particle_real

use iso_c_binding , only: c_int

type, bind(C) :: particle_t
 real(amrex_particle_real) :: pos(3)
 real(amrex_particle_real) :: mass
 integer(c_int) :: id
 integer(c_int) :: cpu
 integer(c_int) :: phase
 integer(c_int) :: state
end type particle_t

– Advection on a MAC or cell-centered velocity grid
– Single and multi-level PIC interpolation, deposition
– Cell linked lists, neighbor list

The ParIter

• Particle data can be iterated over much like the mesh
data

• Aware of tiling (not logical any more), OpenMP.const int lev = 0;
#ifdef _OPENMP
#pragma omp parallel
#endif
for (ParIter pti(*this, lev); pti.isValid(); ++pti)
{
 const auto np = pti.numParticles();

 auto& array_of_structs = pti.GetArrayOfStructs();

 auto& struct_of_arrays = pti.GetStructOfArrays();
 auto& ux = struct_of_arrays[PIdx::ux];
 auto& uy = struct_of_arrays[PIdx::uy];
 auto& uz = struct_of_arrays[PIdx::uz];
 auto& ginv = struct_of_arrays[PIdx::ginv];

 set_gamma(np, ux.data(), uy.data(), uz.data(), ginv.data());

 push_position_boris(np, particles.data(),
 ux.data(), uy.data(), uz.data(), ginv.data(), dt);
}

OpenMP scaling of particles on Cori KNL

Load Balancing with particles

• Particle data introduces an additional challenge to load
balancing.

• If you have a significant amount of particle work, number
of cells is not a good estimate any more.

• Can use work estimates based on number of cells plus
number of particles, but doesn’t work for all applications
(e.g. Monte Carlo).

• In some applications we use real time measurements to
estimate the work distribution

• Dynamic scheduling of OpenMP threads can also help

Load Balancing with particles

Figure courtesy of Remi Lehe

Weak scaling: run time

Before optimization

After optimization

32 ppc, 64^3 cells/node 0 ppc, 256^3 cells/node

Before optimization

After optimization

a) b)

Weak scaling: run time

Before optimization

After optimization

32 ppc, 64^3 cells/node 0 ppc, 256^3 cells/node

Before optimization

After optimization

Weak scaling with particles

Courtesy of Maxence Thévenet

Fluid riser (drag forces, particle-particle work)

• Use a cut cell approach to complex geometries.
• Still block-structured, but cells labelled covered,

cut, or regular
• Within an MFIter loop, ask whether the tile

contains any cut cells.
• If not, treat in normally.
• If it does, pass in extra geometric, connectivity

information.
• All data structures fully inter-operable with

Fortran
• Connectivity info for all 27 potential neighbors is

stored in a single integer.
• Doesn’t sacrifice essential regularity far from

domain boundaries.
• Much more work to do near boundaries, benefits

from dynamic OpenMP scheduling

Plasma Wakefield Accelerator
Nozzle

Embedded Boundaries

Embedded Boundaries with particles

• Level set approach used to
compute whether particles collide
with walls

Courtesy of Johannes Blaschke

Linear solvers

• AMReX provides native geometric Multigrid solvers for
parabolic and elliptic systems.

• Cell-centered and node-centered data.
• Single level and multi-level AMR
• Box agglomeration to avoid coarsening limitations
• Current work - extension to EB, which makes the bottom

solve much more complex

Visualization and IO

• In-house data format
with efficient parallel I/
O for both restart and
plotfiles (has been
much faster than HDF5
… although that is
changing)

• Visualization format
supported by Visit,
Paraview, yt

Image courtesy of
Maxence Thévenet

Interfacing with other Libraries

• SUNDIALS ODE solvers
• Hypre, HPGMG solvers
• FFTW and other FFT libraries
• In-situ and in-transit analytics - Sensei, ALPINE, Henson

Outline

1. Overview of AMReX

2. Introduction to block-structured AMR

3. What tools does AMReX provide?

4. What can you build these tools?

5. Current development directions

6. Where to find more

Example Applications

Astrophysics Multiphase Flow

Particle Accelerators Cosmology FLASH

Combustion

Application Requirements

Particles ODE’s Linear
Solvers

EB

Combustion X X X X

Multiphase X X X X

Cosmology X X X

Astrophysics X X

Accelerators X

Outline

1. Overview of AMReX

2. Introduction to block-structured AMR

3. What tools does AMReX provide?

4. What can you build these tools?

5. Current development directions

6. Where to find more

New architectures and programming models

• Much current work focuses on porting AMReX to GPUs
• Cuda’s Unified Memory for data motion
• Kernels offloaded through a variety of strategies

• NVIDIA’s thrust library for sorting and searching
(particles)

• Mini-App versions of Castro hydro (StarLord) and WarpX
(Electromagnetic PIC) exist

• Approaches to parallelism other than MPI+OpenMP:

– CUDA C/Fortran
– OpenACC
– OpenMP

Outline

1. Overview of AMReX

2. Introduction to block-structured AMR

3. What tools does AMReX provide?

4. What can you build these tools?

5. Current development directions

6. Where to find more

Open source development model

• AMReX and many application codes available on Github:

• All branches public. Bleeding edge development branch,
merged into master monthly.

• Sphinx, doxygen documentation hosted on Github pages,
auto-generated with Travis

• Tutorials live in main code repository
• Issues, pull requests welcome (bug fixes, new features,

documentation, etc...)

https://github.com/AMReX-Codes/amrex

https://github.com/AMReX-Codes/amrex

Nightly regression testing

Questions?

