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Kord Technologies, Inc.
• Founded in 2008 in Huntsville, AL

• Employs over 250 personnel throughout the US

• Kord supports efforts by:
• US Army
• US Navy
• US Airforce
• MDA
• DHS
• NASA
• SMDC

• Offers wide range of services including Systems 
Engineering, IT, Threat Systems Analysis, CFD, Software 
Engineering, Optical Engineering, and Project 
Management.

• Kord also supports Boeing on SLS in thermal analysis, 
stress analysis, fracture modeling, design engineering, 
and CFD
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Kord CFD
• High Speed Aerodynamics

• High Speed Aerothermodynamics
• Conjugate Heat Transfer
• Tightly Coupled Fluid-Structure Interactions

• Cryogenic Propellant Systems
• Ascent Venting (AV) Models

• Shock Capturing Schemes (HLLE++)
• NASA OVERFLOW
• DoD Kestrel/Helios

• Rotorcraft Turbulence
• Consistent LES
• Low-Artificial Dissipation Algorithms

• Volcanic Ash Deposition in GT Engines

• Solvers:
• In-House Unstructured and Structured Compressible NS
• Government (DoD, NASA)
• Commercial (ANSYS Fluent)

• Hardware:
• In-house cluster
• Government HPC resources

31Coupled Flight Simulator and CFD Calculations of Ship Airwake using HPCMP CREATE™–AV Kestrel. Forsythe, et al. 2015

Helicopter Landing in Ship Airwake1

Aerodynamics/Aerothermodynamics
Map of volcanic ash cloud 
from the eruption of 
Eyjafjallajökull (red dot) in 
April 2010 [Met Office, 
2017].

Turbulence / Shock Waves / Acoustics



Overview

• Motivation

• Boltzmann Equation

• Low-Mach Lattice Boltzmann Method (LBM)

• Existing Low-Mach LBM Results

• LBM extensions to transonic and supersonic flows

• Upcoming Work and Preliminary 2D Results

• Future Work
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Motivation (1/3)
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Solve Our Problems
Flows we are interested in

Flows where we think LBM can be utilized today

Ma

Rotorcraft Aerodynamics
Top: Helicopter Landing in Ship Airwake1

Bottom: Vortex Preserving and Consistent LES Algorithms 1Coupled Flight Simulator and CFD Calculations of Ship Airwake using HPCMP CREATE™–AV Kestrel. Forsythe, et al. 2015

High Speed Aerodynamics High Speed Aerothermodynamics
Monolithic CHT and TC FSI

LBM Benefits
• Excellent Advection
• Low Numerical Dissipation
• Local Operations

Wikipedia



Motivation (2/3)
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40 years of microprocessor data normalized to average 
processing power in 1980 [NVIDIA, 2018].

Effectively utilize current and future parallel architecture

Year Cluster GPUs
GPU 

Memory
[GB]

CUDA 
Cores

Single
Precision
[PFLOPS]

Deep
Learning 
[PFLOPS]

Cost
[$1000]

2016 DGX-1
8 Tesla 
P100

128 28672 0.085 - 129

2018 DGX-2
16 Tesla 

V100
512 81920 0.252 2 400

2030 ? ? ? ? ? ? ?

Year CPU Line Max C/T

2017
EPYC

Naples
32/64

2019
EYPC
Milan

48/96?
64/128?

2030 ? ?

NVIDIA

AMD

Intel

Year CPU Line Max C/T

2017 Skylake-SP 28/56

2030 ? ?

V = 0.44 m x 0.48 m x 0.83 m



Motivation (3/3)

• Recent results by NASA LAVA show 
promise in the method for 
aerospace engineering analysis

• Massively parallel 3D Cartesian AMR 
Simulations

• Shown to dramatically reduce 
computational costs due to run-time 
and mesh generation

• Low numerical dissipation which 
paves way to higher fidelity LES

• Existing implementation is Low-
Mach LBM

• Literature currently exists on 
extension of LBM to compressible 
flows - what is the efficiency of the 
method for compressible flows 
compared to existing solutions?
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Low-Mach LBM of Landing Gear
[Barad, Kocheemoolayil, Kiris , 2018].

NASA LAVA Team Results

Vorticity colored by Mach number.
[Barad, Kocheemoolayil, Stich, Kiris, 2018].



Boltzmann Equation

• Density Distribution Function:

𝑓(𝒙, 𝝃, 𝑡)

• Macroscopic variables are moments of the 
distribution function, e.g.:

𝜌 𝒙, 𝑡 = ∫ 𝑓 𝒙, 𝝃, 𝑡 𝑑3𝝃

𝜌 𝒙, 𝑡 𝒖(𝒙, 𝑡) = ∫ 𝝃𝑓 𝒙, 𝝃, 𝑡 𝑑3𝝃

𝜌 𝒙, 𝑡 𝐸(𝒙, 𝑡) =
1

2
∫ 𝝃 𝟐𝑓 𝒙, 𝝃, 𝑡 𝑑3𝝃

• Evolution of 𝑓 in time given by Boltzmann Equation:

𝑑𝑓 𝒙, 𝝃, 𝑡

𝑑𝑡
=
𝜕𝑓

𝜕𝑡
+ 𝜉𝑗

𝜕𝑓

𝜕𝑥𝑗
+
𝐹𝑗

𝜌

𝜕𝑓

𝜕𝜉𝑗
= Ω(𝑓 𝒙, 𝝃, 𝑡 )
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ℋ-Theorem

• ℋ-Theorem originally introduced by Boltzmann in 
1872:

ℋ 𝑓 = ∫ 𝑓 ln 𝑓 𝑑3𝝃

• The ℋ-Theorem is directly related to entropy 
density:

𝜌𝑠 = −𝑅ℋ

• Boltzmann showed that the quantity ℋ can only 
decrease and reaches a minima at equilibrium (in 
other words, equilibrium occurs at maximum 
entropy).

• Collisions drive the density distribution function 
towards equilibrium.
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Collision Operator
• The collision operator represents the non-linear 

local redistribution of 𝑓 due to collisions.

• The operator conserves mass, momentum, and 
energy (elastic):

∫ Ω 𝑓 𝑑3𝝃 = 0
∫ 𝝃Ω 𝑓 𝑑3𝝃 = 𝟎

∫ 𝝃 2Ω 𝑓 𝑑3𝝃 = 0

• The Bhatnagar-Gross-Krook (BGK) operator 
[Bhatnagar, 1954] is given as a relaxation towards 
equilibrium (Maxwell-Boltzmann Distribution):

Ω 𝑓 = −
1

𝜏
𝑓 − 𝑓𝑒𝑞
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Lattice Boltzmann Method
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• We first develop a velocity distribution lattice:
𝜕𝑓

𝜕𝑡
+ 𝜉𝑗

𝜕𝑓

𝜕𝑥𝑗
= Ω 𝑓 →

𝜕𝑓𝑖
𝜕𝑡

+ 𝜉𝑖𝑗
𝜕𝑓𝑖
𝜕𝑥𝑗

= Ωi 𝑓

• At each point, we now have a lattice of dimension DdQn, where d is the dimension 
and n is the number of lattice velocities

• We have a hyperbolic ODE which we can simplify using MOC:
𝑓𝑖 𝒙 + 𝝃𝑖 , 𝑡 + 1 − 𝑓𝑖 𝒙, 𝑡 = Ωi(𝑓𝑖 𝒙, 𝑡 )

D2Q9 lattice with outer distribution 
values and lattice velocities.



Lattice Boltzmann Method (cont.)
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𝑓𝑖 𝒙 + 𝝃𝑖 , 𝑡 + 1 − 𝑓𝑖 𝒙, 𝑡 = Ωi(𝑓𝑖 𝒙, 𝑡 )
• The above equation is two main steps: collision and streaming
• Collision:

𝑓𝑖
′(𝒙, 𝑡) = 𝑓𝑖 𝒙, 𝑡 + Ωi(𝑓𝑖 𝒙, 𝑡 )

• Streaming:
𝑓𝑖 𝒙 + 𝝃𝑖 , 𝑡 + 1 = 𝑓𝑖

′(𝒙, 𝑡)

Streaming step of Lattice Boltzmann for D2Q9 Lattice. 
The inner four cells are consistently colored to visualize 
the propagation.



LBM Collision Operator
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Ω 𝑓 = −
1

𝜏
𝑓 − 𝑓𝑒𝑞 → Ωi 𝑓𝑖 = −

1

𝜏
𝑓𝑖 − 𝑓𝑖

𝑒𝑞

• What is the equilibrium distribution, 𝑓𝑖
𝑒𝑞

? The continuous equilibrium distribution is 

the Maxwell-Boltzmann distribution. The discrete form is developed by discretizing 
the continuous velocity space. The moments of interest must be conserved1.

𝑓𝑒𝑞 𝜌, 𝒖, 𝝃 =
𝜌

2𝜋
3
2

exp −
𝝃 − 𝒖 2

2

• Low-Mach Equilibrium distribution (𝑐𝑠 is particle speed, 𝑊𝑖 are lattice weights):

𝑓𝑖
𝑒𝑞

= 𝑊𝑖𝜌 1 +
𝝃𝒊 ⋅ 𝒖

𝑐𝑠
2 +

𝝃𝒊 ⋅ 𝒖
2

2𝑐𝑠
4 −

𝒖 2

2𝑐𝑠
2

• Macroscopic variables can be computed based on existing distribution values:

𝜌 =෍

𝑖=1

𝑛

𝑓𝑖 =෍

𝑖=1

𝑛

𝑓𝑖
𝑒𝑞

𝜌𝒖 =෍

𝑖=1

𝑛

𝝃𝑖𝑓𝑖 =෍

𝑖=1

𝑛

𝝃𝑖𝑓𝑖
𝑒𝑞

• The relaxation time is a function of the viscosity.
1The LBM: Principles and Practice. Krüger, et. al.



Recovering Navier-Stokes
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• Multiple methods in literature can be used to determine macroscopic governing 
equations

• Chapman-Enskog expansion (1910~1920) is a popular approach and commonly 
used.

• Essentially a linearization of Boltzmann distribution based on the Knudsen number:

𝐾𝑛 =
𝜆

𝐿
~𝜖

𝑓𝑖 = 𝑓𝑖
𝑒𝑞
+ 𝜖𝑓𝑖

1
+ 𝜖2𝑓𝑖

2
+⋯

• It can be shown that the method described thus far recovers the unsteady 
isothermal weakly compressible (essentially incompressible) Navier-Stokes 
equations with 𝒪 𝑀𝑎2 error:

𝜕𝑡 𝜌 + 𝜕𝑗 𝜌𝑢𝑗 = 0

𝜕𝑡 𝜌𝑢𝑖 + 𝜕𝑗 𝜌𝑢𝑖𝑢𝑗 + 𝛿𝑖𝑗𝑝 − 2𝜇𝑆𝑖𝑗 = 0



Benefits and Downsides
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Benefits
• No Poisson equation – a bottleneck in typical incompressible NS solvers
• Simple explicit algorithm
• Collisions are entirely local
• Essentially perfect advection by construction
• Low-Numerical Dissipation

Downsides
• The error terms are of 𝒪 𝑀𝑎2 → extensions must be done to simulate 

compressible flow (𝑀𝑎 ≥ 0.3)
• Prandtl number, Pr = 1
• Method is based on translational energy modes (monatomic gases) and 

consequently the specific heat ratio is fixed (𝛾 = 5/3 for 3D)
• Unsteady by construction
• Resolving wall is prohibitive with Cartesian AMR → Wall Models or Dual-Mesh

Dual-Mesh
(DoD CREATE-AV Kestrel/Helios)

LBM

NS



Low Mach LBM in NASA LAVA

Method
CPU Cores

(type)
Cells

(million)
Wall Days to 
0.19 seconds

Core Days to 
0.19 seconds

Relative
SBU Expense

NS-GCM 3000 (ivy) 298 20.5 61352 12.1

NS-IIM 9600 (has) 222 6.1 58490 15.3

LBM 1400 (bro) 260 2.25 3156 1
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[Barad, Kocheemoolayil, Kiris , 2018]

Unoptimized LBM with 1.6 billion cells 2~ faster than NS with 300 million cells

GCM: Ghost Cell Method IIM: Immersed Interface Method



LBM for Compressible Flow
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• There are numerous research groups around the world working on compressible 
flow extensions to LBM

• The method which we think has the most promise currently is the Entropic 
Compressible LBM by N. Frapolli, S. S. Chikatamarla, and I. V. Karlin of ETH Zurich 
(2016)1

• Key components of the method:
• Unconditionally stable (enables high Re simulations)
• Increases Mach number limit by an order of magnitude (up to 3.0)
• Variable Prandtl number and Specific Heat Ratio (e.g. Pr = 0.71 , 𝛾 = 1.4 for 

standard air)
• Entropic component adds artificial dissipation for shock capturing without 

sensors
• Method was tested and validated on 2D and 3D geometry using AMR1:

• 2D Inviscid/Viscous Transonic & Supersonic NACA0012
• 3D Inviscid Onera M6 Wing
• 3D Compressible Homogeneous Isotropic Turbulence

• Potential issues of the method:
• Computational Efficiency. How does the method compare to existing methods?
• Entropic methods  in general (including low-Mach) add artificial viscosity in 

under-resolved areas similar to sub-grid scale (SGS) LES models – not really an 
issue.

N. Frapolli, S. S. Chikatamarla, and I. V. Karlin, Phys. Rev. E 93, 063302 (2016).



Objectives and Upcoming Work

• Implement compressible LBM1

• Simulate canonical 2D (e.g. TG, VC, oblique shock) 
and 3D (TG) test cases

• Validate and verify the implementation

• Benchmark against existing solvers 
(FUN3D,OVERFLOW)

• Determine scalability and performance using CPU 
MPI and NVIDIA’s CUDA

181N. Frapolli, S. S. Chikatamarla, and I. V. Karlin, Phys. Rev. E 93, 063302 (2016).



LBM for Compressible Flow
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The Entropic Compressible LBM relies on three primary components:
• Enlarged lattice and temperature dependent lattice weights
• Boltzmann’s ℋ-Theorem
• An additional set of populations (𝑔) that represent rotational and vibrational energy 

to enable variable 𝛾

Similarly to traditional LBM, this method uses a lattice. The standard method uses a 
DdQ7d lattice (0,±1,±2,±3), or D2Q49 and D3Q343 for 2D and 3D respectively.

Lattice pruning can be used to reduce 3D lattice to D3Q39.

Method has the same structure and solution technique as traditional LBM:

𝑓𝑖 𝒙 + 𝝃𝑖 , 𝑡 + 1 − 𝑓𝑖 𝒙, 𝑡 = Ω𝑓 𝑓𝑖
𝑔𝑖 𝒙 + 𝝃𝑖 , 𝑡 + 1 − 𝑔𝑖 𝒙, 𝑡 = Ω𝑔 𝑓𝑖

N. Frapolli, S. S. Chikatamarla, and I. V. Karlin, Phys. Rev. E 93, 063302 (2016).

Ω𝑓 𝑓𝑖 = 𝛼𝛽1 𝑓𝑖
𝑒𝑞
− 𝑓𝑖 + 2 𝛽1 − 𝛽2 𝑓𝑖

∗ − 𝑓𝑖
𝑒𝑞

Ω𝑔 𝑓𝑖 = 𝛼𝛽1 𝑔𝑖
𝑒𝑞
− 𝑔𝑖 + 2 𝛽1 − 𝛽2 𝑔𝑖

∗ − 𝑔𝑖
𝑒𝑞



Lattice

20N. Frapolli, S. S. Chikatamarla, and I. V. Karlin, Phys. Rev. E 93, 063302 (2016).

𝑤0 = 𝑤0(𝑇)
𝑤±1 = 𝑤±1(𝑇)
𝑤±2 = 𝑤±2(𝑇)
𝑤±3 = 𝑤±3(𝑇)

𝑊𝑖 𝜉𝑖𝑥, 𝜉𝑖𝑦 , 𝜉𝑖𝑧, 𝑇 = 𝑤𝑖𝑥𝑤𝑖𝑦𝑤𝑖𝑧

෍

𝑖=1

𝑛

𝑊𝑖 = 1

Discrete ℋ-Theorem

ℋ 𝑓 = ∫ 𝑓 ln 𝑓 𝑑3𝝃 → ℋ 𝑓 =෍

𝑖=1

𝑛

𝑓𝑖 ln 𝑓𝑖/𝑊𝑖



Entropic Equilibrium (1)

𝜌 =෍

𝑖=1

𝑛

𝑓𝑖 =෍

𝑖=1

𝑛

𝑓𝑖
𝑒𝑞

𝜌𝒖 =෍

𝑖=1

𝑛

𝝃𝑖𝑓𝑖 =෍

𝑖=1

𝑛

𝝃𝑖𝑓𝑖
𝑒𝑞

2𝜌𝐸𝑡𝑟 = 2𝜌𝐷𝑇 + 𝜌 𝒖 2 =෍

𝑖=1

𝑛

𝝃𝑖
𝟐𝑓𝑖 =෍

𝑖=1

𝑛

𝝃𝑖
𝟐𝑓𝑖

𝑒𝑞

2𝜌𝐸 = 2𝜌𝐶𝑣𝑇 + 𝜌 𝒖 2 =෍

𝑖=1

𝑛

𝝃𝑖
𝟐𝑓𝑖 +෍

𝑖=1

𝑛

𝑔𝑖 =෍

𝑖=1

𝑛

𝝃𝑖
𝟐𝑓𝑖

𝑒𝑞
+෍

𝑖=1

𝑛

𝑔𝑖
𝑒𝑞

• Translational energy and total energy are both tracked

• Rotational energy is tracked using  the separate distributions 𝑔𝑖

21N. Frapolli, S. S. Chikatamarla, and I. V. Karlin, Phys. Rev. E 93, 063302 (2016).



Entropic Equilibrium (2)
Minimize ℋ using LM to enforce conservation to obtain 𝑓𝑖

𝑒𝑞
:

𝐽 𝑓𝑖
𝑒𝑞
, 𝜒, 𝜻, 𝜆

=෍

𝑖=1

𝑛

𝑓𝑖
𝑒𝑞
ln 𝑓𝑖

𝑒𝑞
/𝑊𝑖 + 𝜒 𝜌 −෍

𝑖=1

𝑛

𝑓𝑖
𝑒𝑞

+ 𝜻 ⋅ 𝜌𝒖 −෍

𝑖=1

𝑛

𝝃𝑖𝑓𝑖
𝑒𝑞

+ 𝜆 2𝜌𝐸𝑡𝑟 −෍

𝑖=1

𝑛

𝝃𝑖
𝟐𝑓𝑖

𝑒𝑞

𝜕𝐽

𝜕𝑓𝑖
𝑒𝑞 = 0 =෍

𝑖=1

𝑛

ln
𝑓𝑖
𝑒𝑞

𝑊𝑖
+ 1 − 𝜒 − 𝜻 ⋅ 𝝃𝑖 − 𝜆 𝝃𝑖

𝟐

An extremum is ensured with the following form of 𝑓𝑖
𝑒𝑞

:

𝑓𝑖
𝑒𝑞

= 𝜌𝑊𝑖 exp 𝜒 + 𝜻 ⋅ 𝝃𝑖 + 𝜆 𝝃𝒊
2

𝑔𝑖
𝑒𝑞

= 2𝐶𝑣𝑇 − 𝐷 𝑓𝑖
𝑒𝑞

𝑓𝑒𝑞 𝜌, 𝒖, 𝝃, 𝜃 =
𝜌

2𝜋𝜃
3
2

exp −
𝝃 − 𝒖 2

2𝜃

22N. Frapolli, S. S. Chikatamarla, and I. V. Karlin, Phys. Rev. E 93, 063302 (2016).

← Positive-Definite

← Continuous Velocity Space
Maxwell-Boltzmann Distribution



Polynomial Equilibrium

𝑓𝑖
𝑒𝑞

= 𝜌𝑊𝑖 ቆ

ቇ

1 + 𝝃𝑖 ⋅ 𝒖 +
1

2
𝝃𝑖 ⋅ 𝒖

2 − 𝒖 ⋅ 𝒖 +
𝑇 − 1

2
𝝃𝑖 ⋅ 𝝃𝑖 − 𝐷 +

𝝃𝑖 ⋅ 𝒖

6
𝝃𝒊 ⋅ 𝒖

2 − 3𝒖 ⋅ 𝒖

+
𝑇 − 1

2
𝝃𝑖 ⋅ 𝒖 𝝃𝑖 ⋅ 𝝃𝑖 − 𝐷 − 2 +

1

24
𝝃𝒊 ⋅ 𝒖

4 − 6 𝝃𝒊 ⋅ 𝒖
2 𝒖 ⋅ 𝒖 + 3 𝒖 ⋅ 𝒖 2

+
𝑇 − 1

4
𝝃𝑖 ⋅ 𝝃𝑖 − 𝐷 − 2 𝝃𝑖 ⋅ 𝒖

2 − 𝒖 ⋅ 𝒖 − 2 𝝃𝑖 ⋅ 𝒖
2

+
𝑇 − 1 2

28
𝝃𝒊 ⋅ 𝝃𝒊

2 − 2 𝐷 + 2 𝝃𝒊 ⋅ 𝝃𝒊 + 𝐷 𝐷 + 2

+
𝝃𝑖 ⋅ 𝒖

120
𝝃𝒊 ⋅ 𝒖

4 − 10 𝝃𝒊 ⋅ 𝒖
2 𝒖 ⋅ 𝒖 + 15 𝒖 ⋅ 𝒖 2

+
𝑇 − 1

12
𝝃𝑖 ⋅ 𝒖 𝝃𝑖 ⋅ 𝝃𝑖 − 𝐷 − 4 𝝃𝒊 ⋅ 𝒖

2 − 3 𝒖 ⋅ 𝒖 − 2 𝝃𝒊 ⋅ 𝒖
2

+
𝑇 − 1 2

8
𝝃𝑖 ⋅ 𝒖 𝝃𝑖 ⋅ 𝝃𝑖

2 − 𝐷 𝐷 + 4 𝝃𝑖 ⋅ 𝝃𝑖 + 𝐷 + 2 𝐷 + 4

23[Fares, 2014] 

5th order Hermite polynomial expansion



Entropic Estimate
ℋ 𝑓 = ℋ 𝑓 + 𝛼 𝑓𝑒𝑞 − 𝑓

• Entropic estimate 𝛼 is the non-trivial root of above constraint

• Entropy is guaranteed to remain the same or increase by construction

• For fully-resolved simulations, 𝛼 tends to 2 which is the BGK value

241N. Frapolli, S. S. Chikatamarla, and I. V. Karlin, Phys. Rev. E 93, 063302 (2016).

NACA0012 Airfoil1

𝑀∞ = 1.4, 𝑅𝑒 = 3 × 106

𝑀

𝛼



Gas Properties

25N. Frapolli, S. S. Chikatamarla, and I. V. Karlin, Phys. Rev. E 93, 063302 (2016).

Ω𝑓 𝑓𝑖 = 𝛼𝛽1 𝑓𝑖
𝑒𝑞
− 𝑓𝑖 + 2 𝛽1 − 𝛽2 𝑓𝑖

∗ − 𝑓𝑖
𝑒𝑞

Ω𝑔 𝑓𝑖 = 𝛼𝛽1 𝑔𝑖
𝑒𝑞
− 𝑔𝑖 + 2 𝛽1 − 𝛽2 𝑔𝑖

∗ − 𝑔𝑖
𝑒𝑞

• Relaxation parameters are functions of dynamic viscosity and thermal conductivity (e.g. 
Sutherland law for viscosity and Prandtl number to compute thermal conductivity)

𝛽1 =
1

2𝜇
𝜌𝑇

+ 1

𝛽2 =
1

2𝜅
𝜌𝐶𝑝𝑇

+ 1



Quasi-Equilibrium
𝑓𝑖
∗ = 𝑓𝑖

𝑒𝑞
+𝑊𝑖

ഥ𝑸:𝑹

𝑹 =
𝝃𝑖 ⊗𝝃𝑖 ⊗𝝃𝑖 − 3𝑇𝝃𝑖𝑰

6𝑇3

ഥ𝑸 = ෍
𝑖=1

𝑛

𝑓𝑖(𝝃𝑖 − 𝒖)⊗ (𝝃𝑖 − 𝒖)⊗ 𝝃𝑖 − 𝒖

𝑔𝑖
∗ = 𝑔𝑖

𝑒𝑞
+𝑊𝑖ഥ𝒒 ⋅ 𝒓

𝒓 =
𝝃𝒊
𝑇

ഥ𝒒 =෍
𝑖=1

𝑛

𝑔𝑖 𝝃𝑖 − 𝒖

26N. Frapolli, S. S. Chikatamarla, and I. V. Karlin, Phys. Rev. E 93, 063302 (2016).
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• Chapman-Enskog expansion (1910~1920) is a popular approach and commonly 
used.

• Essentially a linearization of Boltzmann distribution based on the Knudsen number:

𝐾𝑛 =
𝜆

𝐿
~𝜖

𝑓𝑖 = 𝑓𝑖
𝑒𝑞
+ 𝜖𝑓𝑖

1
+ 𝜖2𝑓𝑖

2
+⋯

• It can be shown that the method described thus far recovers the unsteady 
compressible Fourier-Navier-Stokes equations:

𝜕𝑡 𝜌 + 𝜕𝑗 𝜌𝑢𝑗 = 0

𝜕𝑡 𝜌𝑢𝑖 + 𝜕𝑗 𝜌𝑢𝑖𝑢𝑗 + 𝛿𝑖𝑗𝑝 + 𝜏𝑖𝑗 = 0

𝜕𝑡 𝜌𝐸 + 𝜕𝑗 𝜌𝐸 + 𝑝 𝑢𝑗 + 𝜏𝑖𝑗𝑢𝑖 + 𝑞𝑗 = 0

N. Frapolli, S. S. Chikatamarla, and I. V. Karlin, Phys. Rev. E 93, 063302 (2016).



Method Summary

28

• Collision:

𝑓𝑖
′ 𝒙, 𝑡 = 𝑓𝑖 𝒙, 𝑡 + Ωf 𝑓𝑖 𝒙, 𝑡

𝑔𝑖
′ 𝒙, 𝑡 = 𝑔𝑖 𝒙, 𝑡 + Ωg 𝑔𝑖 𝒙, 𝑡

• Streaming:
𝑓𝑖 𝒙 + 𝝃𝑖 , 𝑡 + 1 = 𝑓𝑖

′(𝒙, 𝑡)
𝑔𝑖 𝒙 + 𝝃𝑖 , 𝑡 + 1 = 𝑔𝑖

′(𝒙, 𝑡)

N. Frapolli, S. S. Chikatamarla, and I. V. Karlin, Phys. Rev. E 93, 063302 (2016).

Streaming step of Lattice Boltzmann for D2Q9 Lattice. The inner four 
cells are consistently colored to visualize the propagation.



LBM for Compressible Flow
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Potential issues of the method:
• Computational Efficiency. How does the method compare to existing methods?
• Entropic methods add artificial viscosity in under-resolved areas similar to sub-

grid scale (SGS) LES models.

Method requires at each node at each timestep:
• a multi-dimensional non-linear solve for equilibrium
• a scalar non-linear solve for entropic constant, 𝛼

Our preliminary 2D results show that these non-linear solves are the bulk of the 
computational time.
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2D Taylor Green Vortex



Preliminary 2D Results
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2D Inviscid Vortex Convection
(𝑀 = 0.5, 1282 Grids, 5L Distance) 

Method
𝝎𝑪 / 𝝎𝑪𝟎

(%)

Analytic 100%

Roe-WENO5 99.8%

ELBM

2nd Order
99.7%

Roe-MUSCL
3rd Order

70.9%

Roe-MUSCL
3rd Order

VP
99.0%

Central+AD

4th Order
80.5%

Central+AD

4th Order

VP

94.0%

𝑡 = 0

VP = Vortex Preserving (AVC)
AD = Artificial Dissipation



Preliminary 2D Results
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Double Shear Layer (𝑀 = 0.35 Re = 30,000)

𝑡𝑐 = 0 𝑡𝑐 = 1



Preliminary 2D Results
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Shock Tube (1024x1 Grid)

𝜌𝐿 = 1.0
𝑘𝑔

𝑚3

𝑃𝐿 = 50 𝑘𝑃𝑎

𝑢𝐿 = 0.0
𝑚

𝑠

𝜌𝑅 = 0.2
𝑘𝑔

𝑚3

𝑃𝑅 = 10 𝑘𝑃𝑎

𝑢𝑅 = 0.0
𝑚

𝑠



Future Work

Temperature field of a flame computed with RNS, a block-structured 
AMR solver that uses AMReX as a basis for grid generation and data 
structures. [AMReX, 2018].
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Dual-Mesh
(DoD CREATE-AV Kestrel/Helios)

OVERFLOW

• Test transonic/supersonic cases
• Test 3D performance (3D TG/HIT/etc.)
• Extend implementation with Cartesian AMR framework:

• Chombo
• SAMRAI
• AMReX

• Incorporate either wall-models or dual-mesh overset to enable complex 
geometry simulations


