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Maxwell’s equations in second-order form
Overlapping structured grids

I Maxwell’s Eqn

∂2
t E = c2∆E, x ∈ Ω,

n× E = 0, ∇ · E = 0, x ∈ ∂ΩE , (PEC BC’s)

[n× E]I = 0, [εn · E]I = 0, x ∈ ∂ΩI , (interface conditions)

PEC

∂ΩE

dielectric
Ω2

∂ΩI

EM wave

dielectric
Ω1

∂ΩF
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Using thin boundary grids for computational efficiency

I Solving Maxwell’s equations on Cartesian grids drastically
more efficient (E.g. factor of 10 for 2d fourth order)

I For efficiency, want to fix number of radial points

I Refinement: almost all points on Cartesian but interp.
interface → physical boundary
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Strong instabilities for thin boundary grids

I It has been shown by Appelö, Banks, Henshaw, and
Schwendeman that, in this case, artificial dissipation must
scale like inverse of grid spacing → pay one order of accuracy
to keep stencil compact

I movie

I Want something more robust, no manual tuning, no loss of
observed accuracy
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Upwind for SOWE by Banks and Henshaw (2012)

I Write utt = c2uxx as first-order system in time[
u
v

]
t

=

[
0

c2ux

]
x

+

[
v
0

]
(1a)

I Integrate equation for v in time,

v(x , t) = v(x , 0) + c2

∫ t

0

∂2u

∂x2
(x , τ)dτ (1b)

I Take conservative finite difference approach and write spatial
derivatives as exact difference of flux function

∂2u

∂x2
= D+x f (x − h/2, t) (1c)

where D+w(x) = (w(x + h)− w(x))/h
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Formally exact conservation form for u and v

I Integrate v equation over a single time-step ∆t two times to
get exact conservation form for v and u at tn+1

v(x , tn+1) = v(x , tn) + c2∆tD+Fv (x − h/2, tn) (2a)

u(x , tn+1) = u(x , tn) + ∆tv(x , tn)

+ c2∆t2D+Fu(x − h/2, tn) (2b)

Fv (x , tn,∆t) =
1

∆t

∫ ∆t

0
f (x , tn + τ)dτ (2c)

Fu(x , tn,∆t) =
1

∆t2

∫ ∆t

0

∫ τ

0
f (x , tn + τ ′)dτ ′dτ (2d)

I Flux f = Sxux , Sx high-order correction operator
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Defining the upwind flux function

I Use d’Alembert solution to solve local Riemann problem,
assume ux is const. at cell-faces but v may jump, embed
upwind state u∗x into f = Sxux to get

f̂ (x − h/2, tn + τ)
def
= Sx

∂u

∂x
(xi−1/2, t

n + τ)

+Sx
1

2c

[
v +(xi−1/2, t

n + τ)− v−(xi−1/2, t
n + τ)

] (3a)

I Space-time scheme developed by Taylor expanding f̂ in space
and time and using the PDE to replace time derivatives with
space derivatives (Cauchy-Kowaleski procedure)

I v + and v− gives a left and right biased approximations to v
at cell-face. Note: jump in v is formally zero for smooth
solutions but nonzero in the discrete approximation and is the
source of dissipation
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Conservative curvilinear wave equation

I Conservation form for second-order wave equation

∂2
t u =

1

J
∂`

(
Jg `m∂mu

)
=

1

J
∂`F

` (4a)

J is determinant of Jacobian and g `m = ∂r`

∂xν
∂rm

∂xν

I Write divergence as exact cell-centered difference of fluxes,

∂2
t u =

1

J
D+`f

`(r − h`
2
, t) (4b)

where D+`w(x, t) = (w(x + h`, t)− w(x, t))/h`
I Flux function (no sum)

f `
def
= S`F `(r − h`

2
, t) (4c)

for linear operator S` = ανh2ν
` ∂

2ν
` where αν = B2ν( 1

2 )/2ν!
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Formally exact conservation form for u and v

I Integrate equation for ∂2
t u over a single time-step ∆t two

times to get exact conservation form for v
def
= ∂tu and u at

tn+1

v(r, tn+1) = v(r, tn) +
∆t

J
D+`F `v (r − h`/2, tn) (5a)

F `v (r, tn) =
1

∆t

∫ ∆t

0
f (r, tn + τ)dτ (5b)

u(r, tn+1) = u(r, tn) + ∆tv(r, tn)

+
∆t2

J
D+`F `u(r − h`/2, tn) (5c)

F `u(r, tn) =
1

∆t2

∫ ∆t

0

∫ τ

0
f (r, tn + τ ′)dτ ′ (5d)

I Space-time scheme: Taylor expand f for small τ , h. Use PDE
to replace time derivatives with space derivatives
(Cauchy-Kowalevski procedure)
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Defining the upwind flux function for curvilinear geometries

I Define a stress σ` = Jg `m∂mu. Solve a generalized Riemann
problem using an exact d’Alembert solution. If σ continuous
at interface, characteristics give upwind stress (no sum):

σ`∗ = σ` +
Jc
√

g ``

2

[
v
]r`+
r`− (6a)

I Embed upwind state σ`∗ into flux function to get

f̂
def
= f ` + S` Jc

√
g ``

2

(
v + − v−

)
(6b)

I Note: jump in v is formally zero for smooth solutions, we
haven’t spoiled exactness
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High-order convergence for scattering problems
Dielectric sphere

E y

4th Order Max-norm Convergence

hj Ex r Ey r E z r ∂tE
x r ∂tE

y r ∂tE
z r

1/20 1.5e-3 5.8e-3 5.6e-4 2.2e-2 5.1e-2 8.8e-3
1/40 9.4e-5 16.3 1.9e-4 29.6 3.6e-5 15.7 2.1e-3 10.9 3.1e-3 16.6 7.0e-4 12.5
1/80 6.1e-6 15.3 1.2e-5 15.6 2.2e-6 16.0 1.2e-4 16.8 1.8e-4 16.7 4.2e-5 16.8
rate 3.98 4.43 3.98 3.79 4.07 3.86
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Upwind scheme accurate and robust for more complex
problems
Chirped planewave incident on conducting body

ε1 = µ1 = 1

ε2 = 3, µ2 = 1

hj Ex r Ey r Hz r ∂tEx r ∂tEy r ∂tHz r

1/160 1.4e-2 1.6e-2 3.6e-4 5.4e-1 6.1e-1 3.0e-2
1/320 1.4e-3 10.6 1.5e-3 11.1 2.6e-5 13.8 6.3e-2 8.7 6.5e-2 9.5 1.9e-3 16.0
1/640 1.3e-4 10.6 1.3e-4 11.1 1.9e-6 13.8 7.3e-3 8.7 6.9e-3 9.5 1.2e-4 16.0
rate 3.41 3.47 3.78 3.11 3.24 4.00
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Conducting body in dielectric slab

Video
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How to determine stability for overlapping grids? Theory
of normal modes for IBVP

u
(2)
qu

(2)
0 u

(2)
1 u

(2)
2 . . .

u
(1)
0 u

(1)
p u

(1)
p+1 u

(1)
p+2. . . . . .

x
(1)
N = b

u
(1)
N

x
(2)
−∞

I Consider a semi-infinite domain x ∈ [∞, b] meshed with two
composite grids

I Stability for us means bounded uniformly in time (strict)

I Theory of normal modes (GKS) gives an eigenvalue problem

for complex number s where u
(m)
j (t) = κjmest . Unstable

modes correspond to Re(s) > 0
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Stability issues with overlapping grids

u
(2)
qu

(2)
0 u

(2)
1 u

(2)
2 . . .

u
(1)
0 u

(1)
p u

(1)
p+1 u

(1)
p+2. . . . . .

x
(1)
N = b

u
(1)
N

x
(2)
−∞

Generalized first-order upwind (γ = 1)/ second-order
nondissipative (γ = 0) semi-discretization

d2u
(m)
j

dt2
= D+D−u

(m)
j + γ

hm

2
D+D−

du
(m)
j

dt
, m = 1, 2 (7a)

Boundary and interpolation conditions

u
(1)
N = 0, ‖u(2)‖ <∞, (7b)

u
(1)
0 =

r∑
k=0

aku
(2)
k , u

(2)
q =

r∑
k=0

bku
(2)
p+k . (7c)
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Formal statement of stability condition

Theorem
Discrete solutions to the one-dimensional overlapping grid problem
defined by equations (7a)–(7c) are stable (no exponential growth
in time) provided there are no solutions (s, κ1(s), κ2(s)) to the
system of polynomial equations

G (s, κ1, κ2) = 0, (8a)(
1 + γ

z1

2

)
κ2

1 −
(
z2

1 + γz1 + 2
)
κ1 +

(
1 + γ

z1

2

)
= 0, (8b)(

1 + γ
z2

2

)
κ2

2 −
(
z2

2 + γz2 + 2
)
κ2 +

(
1 + γ

z2

2

)
= 0 (8c)

that satisfy |κm| < 1 for m = 1, 2, and Re(s) > 0, where zm = shm

and

G (s, κ1, κ2)
def
= 1− κ2N

1

−

(
r∑

k=0

akκ
r−k
2

)(
r∑

k=0

bk

(
κk1 − κ

2N−2p−k
1

))
κp1κ

q−r
2 = 0

(9)
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Solving polynomial system for many grid configurations
with γ = 0

I Very easy to find unstable
modes for nondissipative
scheme

I Worst cases mostly at
integral values of δ

I No instability for
low-frequency, well-resolved
modes

0 0.02 0.04 0.06
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Im
sh

1

Re sh1

Unstable roots s

4.0

0.25

δ = h2
h1
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Strong decay in |κm| parallel to Im(shm)

|κ(sh)|, centered scheme, γ = 0 |κ(sh)|, upwind scheme,γ = 1

I For small |shm|,

|κm| ∼ exp
(
−ξm +

γ

4

(
ξ2
m − η2

m

))
then with shm = ξm + iηm, The additional damping is
represented by the term −γ

4η
2
m.

I Analysis shows unstable modes must have |κm| ≈ 1
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Determinant G (s) well-behaved for upwind scheme

Im G = 0
Re G = 0

|G(s)|, γ = 0 |G(s)|, γ = 1
unstable root

Re sh

Im
sh
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Eigenvalues for overlapping grid problem stable to
perturbations

-1 -0.5 0 0.5 1
-2

-1

0

1

2

Im
sh

1

Re sh1

Computed modes – Finite BVP, two grids

Unstable

Re(sh) > 0 unstable

I With no dissipation, any small perturbation of eigenvalues
gives instability

I Upwind scheme is robust with respect to these perturbations
since all eigenvalues far into region of stability
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Solving polynomial system for γ = j/100, j = 1, . . . , 100

0 0.05 0.1 0.15 0.2 0.25 0.3
10 1

10 2

10 3

10 4

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.01

0.02

0.03

0.04

0.05

0.06

Im
(s

)

#
U

n
st

a
b

le
m

o
d

es
M

a
x
R
e(
s)

γ

2.0

0.0
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Implementation of upwind scheme not optimal
Time per step, 2D, ≈ 1M grid points

Cart Curv

0

50

100

1 3.99
11.82

122.3

N
or

m
al

iz
ed

ti
m

e/
st

ep

Order 2

Ad-hoc Diss

Upwind system

Cart Curv

0

100

200

1 129.54

244.7
Order 4

I Ratio of normalization factors ≈ 9
5
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Recalling the upwind flux for curvilinear coordinates
First optimization

I Upwind flux is given by

f̂
def
= f ` + S` Jc

√
g ``

2

(
v + − v−

)
(10a)

I Jump term for v is on the order of truncation error

I v can be replaced by a low-order difference in time of u

I Resulting scheme only involves u, no auxiliary variable needed
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Second-order in time scheme
Taylor time-stepping and Cauchy-Kowalevski procedure

I We are solving utt = Lu. Observe that

D+tD−tu
n = utt +

∆t2

12
utttt +

∆t4

360
utttttt +O(∆t6) (11a)

= Lu +
∆t2

12
L2u +

∆t4

360
L3u +O(∆t6) (11b)

I Approximating Lm to appropriate order to get both space and
time accuracy. E.g.

D+tD−tu = L(4h)u +
∆t2

12
L2

(2h)u +O(∆t4) (11c)

is a fourth-order scheme in space and time

28 / 50



d-Dimensional formally exact conservation form

Lu =
1

J

{
d∑
`=1

D+r`

(
Sr`
(

J
d∑

m=1

g `m
∂u

∂rm

))

+
d∑
`=1

D+r`Sr`

(
J
√

g ``

2

(
u̇+r` − u̇−r`

))}
(12)

I First term, double sum, represents conservative centered
nondissipative wave operator

I Second term, single sum (!), Diss. term
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Only do upwinding on leading order operator
Second optimization

I Dissipation term isolated from wave operator, Lu = Lu + M[u̇]

I Only do upwinding on leading operator,

D+tD−tu
n = Lu + M[u̇] +

∆t2

12
L2u +

∆t4

360
L3u +O(∆t6)

I For curvilinear, L is double sum, M single sum, only nonzero
in coord. directions

I Keeps dissipation stencil thin, computationally cheap
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How to approximate u̇?

I Already using

utt ≈
un+1 − 2un − un−1

∆t2
(14)

I One natural choice: u̇ ≈ (un − un−1)/∆t
I Like artificial diss, wider stencil, coefficient given
I Time step restriction, e.g. fourth-order 1D: c∆t/hx < 0.71 . . .

I Could avoid time step restriction with implicit update
u̇ ≈ (un+1 − un−1)/(2∆t)

I CFL restriction, 1D: c∆t/hx ≤ 1, same as wave operator
I Requires inverting a matrix every time step

I Instead, take a predictor-corrector approach
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General construction of predictor-corrector scheme

I Predict solution using nondissipative wave operator,

up = 2un−un−1+∆t2Lu+
∆t4

12
L2u+

∆t6

360
L3u+O(∆t8) (15a)

I Use predicted state to approximate u̇,

u̇ ≈ (up − un−1)/(2∆t) (15b)

I Finally, correct by adding upwind dissipation

un+1 = up + ∆t2M[u̇] (15c)

I CFL restriction 1D: c∆t/hx ≤ 1, same as only using
wave-operator, no CFL hit
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New scheme provides significant speed-up
Time per step, 2D, ≈ 1M grid points

Cart Curv

0

100

200

1 121.24 12.79.54

244.7
Order 4

Ad-hoc Diss

Pred. Corr.

Upwind system
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Predictor-corrector scheme is fast and accurate
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Figure : CAPTION
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New scheme enables simulating designer metamaterials for
novel optics

I Engineered materials with bulk material properties not found
in nature

I Sub wavelength diffraction, optical computing, cloaking

Figure : images were accessed from http://spie.org/newsroom/

3174-3d-metamaterials-for-thermal-ir-applications
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Need fast, accurate solutions of Maxwell’s equations
Optimized scheme makes larger simulations feasible on modest hardware

I Ad-hoc diss. insufficient for stability, orgininal upwind scheme
very expensive

I ≈12M grid points, practical for laptop
I video
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Overall conclusions

I Efficient stabilizing upwind dissipation, easy to incorporate
into existing codes

I For fixed error tolerance, pred-corr. upwind scheme much
more efficient

I Preliminary work for dispersive Maxwell’s equations

I New approach enables fast, accurate, stable calculations for
wave eqauation on overlapping grids, essentially same cost as
Cartesian domain
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Linear elasticity – Nontrivially coupled system

I Elastic wave equations for horizontal and vertical
displacement u and v ,

ρutt =
(
(2µ+ λ)ux + λvy

)
x

+
(
µvx + µuy

)
y

(16a)

ρvtt =
(
µvx + µuy

)
x

+
(
λux + (2µ+ λ)vy

)
y

(16b)

where ρ = ρ(x , y) , µ = µ(x , y), λ = λ(x , y).

I Write as conservative difference of fluxes by introducing
stresses σxx , σxy , σyy

I Reformulate as first-order system to do characteristic analysis,

wt + Awx + Bwy = 0 (16c)
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Finding upwind state by computing flux across cell-face

I Rewrite system as a derivative in a direction n

wt + Âwn = 0, Â = n1A + n2B (17a)

I Diagonalize to find characteristic variables and characteristic
speeds {±cp,±cs , 0} where

cp =

√
2µ+ λ

ρ
, cs =

√
µ

ρ
(17b)
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I Setup a Riemann problem with left and right states across
lines of constant x or y . Assume σ’s are continuous. Solve to
see upwind fluxes

σxx = σxx +
ρcp
2

[ut ]
x (18a)

σxy = σxy +
ρcs
2

[vt ]
x (18b)

σyx = σxy +
ρcs
2

[ut ]
y (18c)

σyy = σyy +
ρcp
2

[vt ]
y (18d)

I Square brackets indicate jump, superscript indicates w.r.t to
which variable

I Have fourth-order conservative finite difference code based
these fluxes
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High-order correction operator Sx

I Set

f (x , t) = Sx
∂u

∂x
(x , t) (19a)

such that

∂2w

∂x2
(x − h/2, t) = D+x

(
Sx
∂u

∂x
(x − h/2, t)

)
(19b)

I Sx is a generalized shift operator,

Sx =
∞∑
ν=0

ανh2ν ∂
2ν

∂x2ν
(19c)

where αν = B2ν(1/2)/2ν!

I Expanding a few terms,

Sxu(x , t) = u(x , t)− h2

24

∂2u

∂x2
(x , t) +

7h4

5760

∂4u

∂x4
(x , t) + . . .

(19d)
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Stability for IBVP (GKS Theory)
Laplace transform in t with dual variable s (assuming
homogeneous initial data)

s2ũ
(m)
j =

1

h2
m

(
ũ

(m)
j+1 − 2ũ

(m)
j + ũ

(m)
j−1

)
+ γ

s

2hm

(
ũ

(m)
j+1 − 2ũ

(m)
j + ũ

(m)
j−1

)
, m = 1, 2,

(20a)

with transformed boundary and interpolation conditions

ũ
(1)
N = 0, ‖ũ(2)‖ <∞, (20b)

ũ
(1)
0 =

r∑
k=0

ak ũ
(2)
k , ũ

(2)
q =

r∑
k=0

bk ũ
(2)
p+k . (20c)

Let ũ
(m)
j = κjm and substitute into (20a) gives resolvent equation,(

1 + γ
zm
2

)
κ2
m −

(
z2
m + γzm + 2

)
κm +

(
1 + γ

zm
2

)
= 0, (20d)

where zm = shm.
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Make GKS assumption that Re(s) > 0 and look for
solutions

κm =

{
κ−m for η2

m ≤
ξm(2ξ2

m+3γξm+4)
2ξm+γ ,

κ+
m for η2

m > ξm(2ξ2
m+3γξm+4)
2ξm+γ ,

(21a)

for shm = ξm + iηm so that |κm| < 1 for Re(zm) > 0.

ũ
(1)
j = A(s)(κj1 − κ

2N−j
1 ) j = 0, 1, . . . ,N − 1,N (21b)

ũ
(2)
j = B(s)κq−j2 j = . . . , q − 1, q (21c)

Interpolation

A
(

1− κ2N
1

)
= B

r∑
k=0

akκ
q−k
2 (21d)

B = A
r∑

k=0

bk

(
κp+k

1 − κ2N−(p+k)
1

)
, (21e)
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Algebraic conditions for stability

Leads to a homogeneous linear system for A and B,[
κ2N

1 − 1
∑r

k=0 akκ
q−k
2∑r

k=0 bk

(
κp+k

1 − κ2N−(p+k)
1

)
−1

][
A
B

]
=

[
0
0

]
.

(22a)

For nontrivial solutions to (22a) to exist, the determinant of the
matrix in (22a) must vanish,

G (s, κ1, κ2)
def
= 1− κ2N

1

−

(
r∑

k=0

akκ
r−k
2

)(
r∑

k=0

bk

(
κk1 − κ

2N−2p−k
1

))
κp1κ

q−r
2 = 0

(22b)
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When can we prove there are no unstable modes?

I The impractical case: If we allow the number of points on the
boundary fitted grid to grow large as we refine the grid and
keep the overlap fixed, we can show that there are no
solutions to the constrained polynomial system.

I But this is precisely the refinement process we wanted to avoid
by fixing the number of points on the boundary fitted grid

I Practical case: Keeping the number of points on boundary
fitted grid fixed, we are unable to prove that there are no
solutions to the polynomial system with |κm| < 1 and
Re(s) > 0.

I Instead of a formal proof, we present some analytical results
that suggest why the upwind scheme remains stable and show
stability by conducting a careful numerical search for unstable
modes
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Searching a parameter space for unstable modes

I Provide convincing evidence of stability without a formal proof

I Specify grid configuration and solve for all roots of polynomial
system (8a)– (8b)

I Roots can be computed a variety of ways (Gröebner basis,
homotopy continuation, argument principle...). Results shown
for homotopy method (hybrid analytic-numerical), many
results confirmed with Gröebner basis (exact)

I Overlapping grid characerized by δ = ∆x (2)/∆x (1) and off-set

x
(2)
0 . Define reasonable bounds for δ

I Valid grids satisfy a centered interpolation condition

I Choose number of points,Mδ and Mx in search space for δ

and x
(2)
0
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Deriving upwind state from characteristic analysis

I Convert utt = c2uxx to first-order system with v = ρut and
σ = c2ux

I Diagonalize into characteristic variable and solve a Riemann
problem for left and right states (vL, σL) and (vR , σR)

I Assume σ continuous (σ = σR = σL) and solve for positive
time to get upwind state

σ∗ = σ +
cρ

2

[
vR − vL

]
(23)

I Impedance times a jump in velocity add dissipation
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Stability for many boundary points
A theorem

Lemma
There are no unstable solutions to the one-dimensional overlapping
grid problem when

|κ1|2N + C 2
r (1 + |κ1|2N−2p−r ) |κ1|p |κ2|q−r < 1 (24)

where Cr = max {
∑r

k=0 |ak |,
∑r

k=0 |bk |} .

Proof.
Triangle inequality on (8a) Using |κm| < 1, r > 0, p ≥ 0,
q − r ≥ 0 N > 0 and 2N − 2p − r ≥ 0 gives |G (s, κ1, κ2)| > 0
when |κ1|2N + C 2

r (1 + |κ1|2N−2p−r ) |κ1|p |κ2|q−r < 1
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Computation
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Standing Wave N = 7, t = 3.
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Standing Wave N = 43, t = 3.
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