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ICURe Programme
Innovation to Commercialisation of University Research (ICURe)

• Visit Expo and Industries worldwide (Oil&Gas, Pharmacuetical, Energy, 
Environmental …)

• Understand and learn about the pore scale challenges with flow and 
transport in porous media
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Mechanistic Models

Prediction from mechanistic understanding and modelling of local processes
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PhD Project
Optimisation of transport and flow through fuel cell gas diffusion layers 

using direct numerical simulations.
So Far

• Patent Idea – Looking to acquire patent before publication

• Investigation into the pore scale two-phase flow of water and air in fibrous 
gas diffusion layer (GDL)

• Relationship between fibrous microstructural design and effective transport 
properties

• Understanding the interfaces between gas channels, Microporous layer, 
GDL
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Fuel Cell Introduction
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Wettability

Hydrophilic ! < 90° Hydrophobic ! > 90°
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!
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“wetting fluid” “non-wetting fluid”
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Dynamic Properties

Ca = $%&
'

M = %&
%)

Capillary Number
$ Fluid velocity
%& Invading Fluid viscosity
' Surface Tension

Viscosity Ratio

%) Defending fluid viscosity

Where saturation is important, pore 
scale mechanisms cannot be ignored
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Original Simulation Method
Volume of Fluid Method (VOF) – OpenFOAM

Interface Method – IsoAdvector – For sharp Interface 

Problems:

• High resolution mesh needed between pore throats 10 cell width

• Scales of system (mm to μm) results in small time step 10-8 s

• Difficult to realise REV in 3D due to the mesh size 10-9 cells

• Two-phase flow interface problems at low capillary numbers
o Spurious currents
o Smearing of interface – interface diffusion
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Domain and Simulation
2D

Time Saving (1 week)

3D
More accurate 

representation (1 month)
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Capillary Number Effect

Ca = 1.4 x 10-3 Ca = 1.4 x 10-2

More pores invaded, GDL blocked for reactant access to catalyst layer
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Two-phase Flow Animations
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Patent Idea - Performance Increase
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Can the GDL be improved?

Standard New Method
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Simulations with Artificial MPL
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• Water management at high 
current density

• MPL crack importance for water 
transport.

• New method could possibly 
improve water management

Simulation Results
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P O R T R E
Pore-scale Transport Reaction Energy



• Continuum-scale models are based on empirical and even incorrect 
assumptions.

• To couple phenomena it requires physically-based understanding of 
processes.

• Advances in computational makes the detailed pore-scale simulations more 
feasible.

• Evaluating the validity of new theories is not always feasible using 
experimental approaches.

Advantages and applications of pore-scale modelling
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9 Pore Units 200,000 cells
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9 Pore Units 2 pore body
7 pore throat
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Larger Domain Scales Achievable 

Pores > 50,000

FVM equivalent 1 billion cells
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Micro-CT scan

Volume extraction

Removal of solids

Network Construction

Network Extraction
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Methodology

!" = $%&
' < 1

Low Reynolds number – stokes flow, Poiseuille flow 

*+ = *, − *. = /(1., 34)

Capillary Pressure (*+) a function of saturation 
and specific interfacial area.

Interfacial Tension forces become important
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Network Continuity
!"
!# + % & "' = )

) Sink/Source Term (Reactions, phase change …)

Incompressible flow

Mass continuity simplifies to volume continuity across network and in pore units

% & ' = 0

Regular network mass conservation rules:

+,
+- = 0
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The change in the saturation in time, and therefore volume of the pore i must be 
equal to the sum of all the flows into and out of pore i:

Pore throat flow calculated using the pressure of phase between i and j hydraulic 
conductivity.

Hydraulic conductivity is affected by viscosity and interface configuration

The sum of the non–wetting and wetting fluids must be unity.

!
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Network Continuity



In each throat, the flow rate is calculated using Poiseuille equation:

!"# =
%
8' ("#

) *" − *#
,"#- .

Fluid Flow

/"#0

Geometry (cross section, length) and fluid properties (viscosity, contact angle)
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Local rules within pore body:

• Drainage – Invasion of non-wetting phase

• Imbibition – Invasion of wetting phase

• Shape effect on filling mechanisms

!"# = 2&'(" (" Interface curvature inside pore body

(" found by either analytical or computational methods for various pore shapes 
and wettability  

(" = )(+,, ., Δ ")

1 2 3

Local rules
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PNM Methodology

!" =
2% cos )

*Entry Capillary Pressure

• If !" is larger than the entry capillary pressure, the non-wetting fluid will 
invade the pore.

• In Quasi-static PNM, Capillary pressure can be set and all the pores 
possible will be filled.

• During imbibition (invasion of the wetting fluid), the only resistance to 
flow is from the pore body filling.
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In two-phase flow, both fluids can occupy pore throats and bodies 

!"

!#

Hydraulic conductivity of both non-wetting and 
wetting phases allows for simulation of real 
mechanisms:

• Counter-current and co-current flow

• Trapping and snap off

• Interface dynamics and ganglia movement

Relative Permeability
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Quasi-static and Dynamic

29



• Solute Transport
!"
!# = % & '%" − % & )" + +

Multi-physics Modules

• Electro-kinetic flow

• Reactive transport

• Mixed Wettability

• Phase change

• Dynamic alteration to the PNM

• Mechanisms for synthetic porous materials
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Transport and Speed Validation

Ref: Oostrom et al, Comp Geo, 2014, 1-23

1 to 24 h (32 p)

1 to 45 h (32 p)

1 min (1 p)
2 min (1 p)

1 to 7 day 
(46 to 96 p)

4 to 7 hours
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Experiment I;  effect of injection rate Experiment II; effect of pore size

Experiment III; effect of aspect ratio Experiment IV; effect of heterogeneity

Ref: Oostrom et al, Comp Geo, 2014, 1-23

Experimental Validation
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Two-phase pore-network models: simulations vs. experiments

Joekar-Niasar et al, WRR, 2010
An irregular  unstrucutred network with hyperbolic polygonal cross sections.

Air-water interface 
[Liu et al Lab Chip, 
2012]]
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Generally, the imbibition saturation curve has not been able to be accurately modelled



-Joekar-Niasar et al, WRR, 2009

Saturation Patterns

-Joekar-Niasar, V., Hassanizadeh, S. M.  (2011), International Journal of Multiphase Flow
-Joekar-Niasar, V., Hassanizadeh, S.M. (2011), WRR
-Joekar-Niasar, V., Hassanizadeh, S.M. (2012), Transport in Porous Media 34



Pore-scale simulation of 
advection-diffusion in a 
sandstone rock. Dynamic Two-phase 

flow simlation of 
viscous fingering

Dynamic Transport and Flow
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A B

C D

Uncorrelated (A) and correlated (B) pore 
networks (56,000 Pores)

Capillary Pressure Saturation and Relative 
Permeability Saturation curves
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Applications

Various Applications with flexible added physics:

• Oil & gas reservoir engineering
• Groundwater
• Pharmaceuticals
• Fuel Cell Electrodes
• Battery Electrodes
• Filtration

What other mechanisms or areas could this be applied?
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Discussion

• Compared to other pore-scale modelling techniques, pore-network modelling can 
still provide more flexibility in tractability and decoupling of processes. There is a 
huge potential in further development of hybrid pore-scale models.

• Pore-scale modelling provides valuable insight into physics of porous media 
phenomena, such as multiphase flow, mixing, .., given than some processes have 
never been studied using such models.

• Multi-process pore-scale modelling is an emerging area

• Investment in “benchmarking” of various pore-scale models is on going.
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Interest
• Applications to various industries will uncover future research an commercial 

demands, are there any areas where this could apply?

• Any questions?

Thank you!

Daniel Niblett

Chemical Engineering PhD Student
University of Manchester

daniel.niblett@manchester.ac.uk
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