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Stiffness Definition for ODE’s

• “Stiffness” comes about from the numerical analysis of

mathematical models constructed to simulate dynamic

phenomena containing widely different time scales.

• Assume that our CFD problem is modeled with sufficient

accuracy by a coupled set of ODE’s producing an A matrix.

• The difference between the dynamic scales in physical space is

represented by the difference in the magnitude of the eigenvalues

of A.

• Consider now the form of the exact solution of a system of

ODE’s with a complete eigensystem, ~xm and λm.
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Driving and Parasitic Eigenvalues

• Eigenvalues of A will be complex with negative real parts.

• Ordering the eigenvalues by their magnitudes

|λ1| ≤ |λ2| ≤ · · · ≤ |λM | (1)

• Subdivide the transient solution into two parts.

Transient

Solution
=

p∑
m=1

cme
λmt ~xm︸ ︷︷ ︸

Driving

+
M∑

m=p+1

cme
λmt ~xm︸ ︷︷ ︸

Parasitic

(2)

• Separate our eigenvalue spectrum into two groups

– [λ1 → λp] called the driving eigenvalues
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– Choice of a time-step and marching method must accurately

approximate the time variation of the associated eigenvectors

– [λp+1 → λM ], called the parasitic eigenvalues

– Time accuracy is not required for the eigenvectors associated

with these

– Their presence must not contaminate the accuracy.

– Time accuracy dictated by the driving eigenvalues

– Numerical stability requirements by the parasitic ones.
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Resolution and Stability

• In many numerical applications, eigenvectors associated

– with the small |λm| are well resolved

– with the large |λm| are resolved much less accurately.

• In the complex λh plane
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λ
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• Time step chosen so that time accuracy for the eigenvectors

associated with the eigenvalues lying in the small circle
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• Stability without time accuracy is associated with the eigenvalues

lying outside of the small circle but still inside the large circle.

The whole concept of stiffness in CFD arises from the

fact that we often do not need the time resolution of

eigenvectors associated with the large |λm| in the

transient solution, although these eigenvectors must

remain coupled into the system to maintain a high

accuracy of the spatial resolution.
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Stiffness Classifications

• An inherently stable set of ODE’s is stiff if

|λp| � |λM |

• Define the ratio

Cr = |λM | / |λp|

• For example, categories

Mildly-stiff Cr < 102

Strongly-stiff 103 < Cr < 105

Extremely-stiff 106 < Cr < 108

Pathologically-stiff 109 < Cr

• Bounds are arbitrary.
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Relation of Stiffness to Space Mesh Size

• Many flow fields are characterized by a few regions having high

spatial gradients of the dependent variables and other domains

having relatively low gradient phenomena.

• Diffusion equation: eigenvalues are all real negative numbers

• Consider the case when all of the eigenvalues are parasitic, i.e.

Steady State
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• Let M be the number of cells, ∆x = π
M+1 ,

λm = − 4ν

∆x2
sin2

(
mπ

2(M + 1)

)

λ1 = − 4ν

∆x2
sin2

(
π

2(M + 1)

)
≈ −

(
4ν

∆x2

)(
∆x

2

)2

= −ν

λM ≈ −
4ν

∆x2
sin2

(
π

2

)
= − 4ν

∆x2

• Stiffness ratio, Cr

|λM | / |λ1| ≈
4

∆x2
= 4

(
M + 1

π

)2

• Note Cr increases as 1
(∆x)2
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Stiffness For Convection

• Convection equation: periodic central differences

• Let M be the number of cells, ∆x = π
M ,

λm = − a

∆x
i sinm∆x

λ1 = − a

∆x
i sin ∆x ≈ −i a

∆x
(∆x) = −ia

λM = −i a
∆x

sinM∆x ≈ −iaM

• Stiffness ratio, Cr

|λM | / |λ1| ≈M =
π

∆x
≈ 1

∆x

• Note Cr increases as 1
∆x
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Coping With Stiffness

• Mildly-stiff system composed of a coupled two-equation set

having the two eigenvalues λ1 = −100 and λ2 = −1.

• For the ODE solution

u1(t) = c1e
−100tx11 + c2e

−tx12 + (PS)1

u2(t) = c1e
−100tx21 + c2e

−tx22 + (PS)2

• The first components decay rapidly (as e−100t) relative to the

second components, (e−t)

11



Example using Euler Explicit

• Explicit Euler method applied to the representative equation.

– The transient solution is un = (1 + λh)n

– h is chosen so that integration will be numerically stable.

u1(n) = c1(1− 100h)nx11 + c2(1− h)nx12 + (PS)1

u2(n) = c1(1− 100h)nx21 + c2(1− h)nx22 + (PS)2

• Assume that our accuracy requirements are such that sufficient

accuracy is obtained as long as |λh| ≤ 0.1.

• Defines a time step limit based on accuracy considerations of

h = 0.001 for λ1 and h = 0.1 for λ2.

• The time step limit is h = 0.02 is based on stability for λ1.
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• Let c1 = c2 = 1 and assume that an amplitude less than 0.001 is

negligible.

• 66 time steps with h = 0.001 to resolve the λ1 term.

• With this time step the λ2 term is resolved exceedingly well.

• After 66 steps

– Amplitude: λ1 term (i.e., (1− 100h)n) is less than 0.001

– Amplitude: λ2 term (i.e., (1− h)n) is 0.9361.

• Hence the λ1 term can now be considered negligible.

• To drive the (1− h)n term to zero (i.e., below 0.001), we would

like to change the step size to h = 0.1 and continue.
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• This is not possible because of the coupled presence of

(1− 100h)n, which in just 10 steps at h = 0.1 amplifies those

terms by ≈ 109

• In fact, with h = 0.02, the maximum step size that can be taken

in order to maintain stability, about 339 time steps have to be

computed in order to drive e−t to below 0.001.

• Thus the total simulation requires 405 time steps.
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Implicit Methods

• Unconditionally stable implicit trapezoidal method.

• In this case σ = 1+λh
1−λh

• For the previous example: λ1 = −100,λ2 = −1.

u1(n) = c1

(
1− 50h

1 + 50h

)n
x11 + c2

(
1− 0.5h

1 + 0.5h

)n
x12 + (PS)1

u2(n) = c1

(
1− 50h

1 + 50h

)n
x21 + c2

(
1− 0.5h

1 + 0.5h

)n
x22 + (PS)2

• Using h = 0.001 will resolve the initial transient of the term

e−100t
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• After 70 time steps

– The λ1 term
(

1−50h
1+50h

)70
= 0.0009 < 0.001: negligible.

– The λ2 term
(

1−0.5h
1+0.5h

)70
= 0.9324, not negligible.

• Proceed to calculate the remaining part of the event using our

desired step size h = 0.1 without any problem of instability on

either term.

• After 69 more steps the amplitude of the second term ¡ 0.001.

• In both intervals the desired solution is second-order accurate

and well resolved.

• The total simulation requires 139 time steps.
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