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Quick Review



Quick Review

Semi-discrete Approach

• PDE converted to system of ODEs by spatial discretization
• ODEs converted to O∆Es by time-marching method

Spatial Operator Matrices

• periodic linear convection equation leads to aBp(−1, 0, 1)/2∆x

• pure imaginary eigenvalues

• diffusion equation leads to νB(1,−2, 1)/∆x2

• negative real eigenvalues
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Introduction

Numerical Dissipation
Needed for

• stability and convergence
• damping of under-resolved spurious high-frequency modes
• avoiding oscillations at discontinuities such as shocks
• preservation of positivity of quantities that must be positive

Not needed if scales relevant to physical dissipative processes are
sufficiently well resolved, for example direct numerical simulations of
turbulent flows
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Introduction

Numerical Dissipation
Introduced through

• upwinding
• artificial dissipation
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One-sided First-Derivative Space
Differencing



One-sided First-Derivative Space Differencing

Linear Convection Equation

∂u

∂t
= −a

∂u

∂x

Point Operator

− a(δxu)j =
−a

2∆x
[−(1 + β)uj−1 + 2βuj + (1− β)uj+1]

=
−a

2∆x
[(−uj−1 + uj+1) + β(−uj−1 + 2uj − uj+1)]

A first-order backward difference operator is given by β = 1, and a
first-order forward difference operator is given by β = −1.

5



One-sided First-Derivative Space Differencing
Matrix Operator
Matrix Operator for Periodic Boundary Conditions

−aδx =
−a

2∆x
Bp(−1− β, 2β, 1− β)

Eigenvalues of the matrix

λm =
−a

∆x

{
β

[
1− cos

(
2πm

M

)]
+ i sin

(
2πm

M

)}
, m = 0, 1, . . . ,M−1

If a is positive, the forward difference operator (β = −1) produces
ℜ(λm) > 0, the centered difference operator (β = 0) produces
ℜ(λm) = 0, and the backward difference operator produces ℜ(λm) < 0.
Hence the forward difference operator is inherently unstable, while the
centered and backward operators are inherently stable. If a is negative,
the roles are reversed. But the eigenvalues of the 1D Euler equations
(u, u+ a, u− a) are of mixed sign in subsonic flow.
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Upwind Schemes

Linear Convection Equation (scalar)

∂u

∂t
+ a

∂u

∂x
= 0

∂u

∂t
+ (a+ + a−)

∂u

∂x
= 0 , a± =

a± |a|
2

If a ≥ 0, then a+ = a ≥ 0 and a− = 0. Alternatively, if a ≤ 0, then
a+ = 0 and a− = a ≤ 0. Now for the a+ (≥ 0) term we can safely
backward difference and for the a− (≤ 0) term forward difference.

Equivalent form:
Point Operator

− a(δxu)j =
−1

2∆x
[a(−uj−1 + uj+1) + |a|(−uj−1 + 2uj − uj+1)]
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Flux-Vector Splitting

Linear, Constant-Coefficient Hyperbolic System

∂u

∂t
+

∂f

∂x
=

∂u

∂t
+A

∂u

∂x
= 0

For a hyperbolic system, A is diagonalizable:

Λ = X−1AX

where Λ is a diagonal matrix containing the eigenvalues of A, and X is
the matrix of right eigenvectors, and the eigenvalues are all real.
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Flux-Vector Splitting

Premultiplying by X−1, postmultiplying A by the product XX−1, and
noting that X and X−1 are constants, we obtain

∂X−1u

∂t
+

∂

Λ︷ ︸︸ ︷
X−1AX X−1u

∂x
= 0 .

With w = X−1u, this can be rewritten as

∂w

∂t
+ Λ

∂w

∂x
= 0 .

When written in this manner, the equations have been decoupled into
scalar equations of the form

∂wi

∂t
+ λi

∂wi

∂x
= 0 .
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Flux-Vector Splitting

Start with the decoupled equations and use the same approach we used
for the linear convection equation:

∂wi

∂t
+ λi

∂wi

∂x
= 0

Λ = Λ+ + Λ−

Λ+ =
Λ+ |Λ|

2
, Λ− =

Λ− |Λ|
2

∂w

∂t
+ Λ

∂w

∂x
=

∂w

∂t
+ Λ+ ∂w

∂x
+ Λ− ∂w

∂x
= 0

10



Flux-Vector Splitting

Now let’s recouple the equations:

∂Xw

∂t
+

∂XΛ+X−1Xw

∂x
+

∂XΛ−X−1Xw

∂x
= 0

A+ = XΛ+X−1, A− = XΛ−X−1

∂u

∂t
+

∂A+u

∂x
+

∂A−u

∂x
= 0

Define

f+ = A+u, f− = A−u
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Flux-Vector Splitting

∂u

∂t
+

∂f+

∂x
+

∂f−

∂x
= 0

f = f+ + f−

Use a backward difference for the f+ term and a forward difference for
the f− term
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Flux-Difference Splitting

Finite Volume Method

Control volume in one dimension

Apply a reconstruction in each cell to get left and right states at each
interface

Find a single numerical flux at the interface based on these states
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Flux-Difference Splitting

Scalar Problem (decoupled)

∂w

∂t
+ Λ

∂w

∂x
= 0

Centered flux function (nondissipative):

ĝj+1/2 =
1

2
[g(wL) + g(wR)]

Upwind flux function (dissipative):

(ĝi)j+1/2 =

{
λi(wi)

L if λi > 0

λi(wi)
R if λi < 0

(ĝi)j+1/2 =
1

2
λi

[
(wi)

L + (wi)
R
]
+

1

2
|λi|

[
(wi)

L − (wi)
R
]
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Flux-Difference Splitting

Now let’s recouple

ĝj+1/2 =
1

2
Λ
(
wL + wR

)
+

1

2
|Λ|

(
wL − wR

)

Xĝj+1/2 =
1

2
XΛX−1X

(
wL + wR

)
+

1

2
X|Λ|X−1X

(
wL − wR

)

f̂j+1/2 =
1

2

(
fL + fR

)
+

1

2
|A|

(
uL − uR

)
|A| = X|Λ|X−1
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Flux-Difference Splitting

For full upwinding, for example in supersonic flow where all eigenvalues
have the same sign

f̂j+1/2 =

{
fL if all λi

′s > 0

fR if all λi
′s < 0

Achieved with Aj+1/2 = A(uj+1/2)

f̂j+1/2 =
1

2

(
fL + fR

)
+

1

2
|Aj+1/2|

(
uL − uR

)
where Aj+1/2 satisfies (Rankine-Hugoniot jump condition across shocks)

fL − fR = Aj+1/2

(
uL − uR

)
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Flux-Difference Splitting

This property of Aj+1/2 is obtained from the following Roe-average state:

uj+1/2 =

√
ρLuL +

√
ρRuR√

ρL +
√
ρR

Hj+1/2 =

√
ρLHL +

√
ρRHR√

ρL +
√
ρR

17



Artificial Dissipation



Artificial Dissipation

Any operator can be split into its antisymmetric part and its symmetric
part, for example for first-order backward differencing:

(δaxu)j =
uj+1 − uj−1

2∆x
, (δsxu)j =

−uj+1 + 2uj − uj−1

2∆x

Phase error comes from the antisymmetric part, dissipation from the
symmetric part

Consistent with what we saw before, this can be applied to the scalar
linear convection equation with wave speed λi of arbitrary sign as follows:

λiδx = λiδ
a
x + |λi|δsx
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Artificial Dissipation

Extension to hyperbolic systems follows the same recoupling approach we
used for upwinding:

δx(Au) = δax(Au) + δsx(|A|u)

leading to

δxf = δaxf + δsx(|A|u)

A common choice for the symmetric operator is

(δsxu)j =
ϵ

∆x
(uj−2 − 4uj−1 + 6uj − 4uj+1 + uj+2)

which is proportional to ∆x3uxxxx, so it provides a dissipative term that
is third order, which can be combined with second-order centered
differencing
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Artificial Dissipation

Upwind-Biased Schemes

Example: Third-order upwind-biased operator split into antisymmetric
and symmetric parts:

(δxu)j =
1

6∆x
(uj−2 − 6uj−1 + 3uj + 2uj+1)

=
1

12∆x
[(uj−2 − 8uj−1 + 8uj+1 − uj+2)

+(uj−2 − 4uj−1 + 6uj − 4uj+1 + uj+2)] .

The antisymmetric component of this operator is the fourth-order
centered difference operator. The symmetric component approximates
∆x3uxxxx/12. Therefore, this operator produces fourth-order accuracy in
phase with a third-order dissipative term.
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