(intel®

Software

Roofline: should |
optimize for compute,

memory or both?

Dunni Aribuki, Technical Consulting Engineer
Compute Performance & Developer Products Division, Intel
IR
Ofe "7 vay,
110 11" 10

- 0
Y. 0 ‘j)Oo’l“ 0(1]0‘1100

Topics

e Roofline Introduction

e Roofline in Intel® Advisor

e Demo

 Optimizing Using Roofline

Copyright © Intel Corporation 2019
rnam n i

*Oth

Roofline Chart

A

FLOP/s

>

Arithmetic Intensity
FLOPs:Byte

Roofline first proposed by University of California at Berkeley:
Roofline: An Insightful Visual Performance Model for Multicore Architectures, 2009
Cache-aware variant proposed by University of Lisbon:
Cache-Aware Roofline Model: Upgrading the Loft, 2013

Copyright © Intel Corporation 2019

*Other names and brands m laimed as t roperty of others.

https://people.eecs.berkeley.edu/~kubitron/cs252/handouts/papers/RooflineVyNoYellow.pdf
http://www.inesc-id.pt/ficheiros/publicacoes/9068.pdf

Ultimate Performance Limits

FLOPS

° 1

Ultimately Memory- Ultimately Compute- ‘
Bound Bound

>

Arithmetic Intensity
FLOP/Byte

Copyright © Intel Corporation 2019 (|nte|
*Other names and bran laimed he proper rs. =

Software

ldentifying Good Optimization Candidates

Focus optimization
effort where it makes
the most difference.

* Large, red loops
have the most
impact.

* Loops far from the
upper roofs have
more room to
improve.

Copyright © Intel Corporation 2019
ol rnam i

GFLOPs/S
A

Q’ o\'\ Q' .\;L Q’ .\:5
2R 2 2
a7 QY o

e «
W W W CPUCap:FMAs

IR CPU Cap: Vector Add

O_cru Cap: Scalar Add

@ °

>
Arithmetic Intensity (FLOPs/Byte)

AT

Software

5

ldentifying Potential Bottlenecks

Performance (GFLOPS) @ Q I « x B~ |Mu=

Final roofs do apply;
sub-roofs may apply. 55.21 - 0 2

* Roofs above indicate
potential bottlenecks

* Closer roofs are the
most likely suspects

* Roofs below may
contribute but are
generally not primary

bottlenecks 0.037 0.24
Self Elapsed Time: 13.734s Total Time: 13.734 s Arithmetic Intensity (FLOP/Byte)

0.89 —

Copyright © Intel Corporation 2019 intel'

o *Other names and brands may be claimed as the property of others 0
D——/—D Software

Roofline Chart in Intel® Advisor

A Q eIy v | Cores: 48 on 2 socket(s) 9,y Default: FLOAT v ‘I* Compare v -

Roof values are Lo RestneVewSeurs -

; — [] Color Roofiine zones
m ea S u red . Rt : 1] "?‘Show optimal scale for each Roofline view .

~)
(0 Show one scale that accommodates all Roofline views

Roofs Settings
P) [use single-threaded benchmark results to build roofs ©
Dots re p rese nt . e Gt '7 | PP 7 e - Roof Name Visible Selected Value Dot
. o e PO ’ L1 Bandwidth ~ M [17379.21 |GBisec
pr0f||ed |OOpS e L2 Bandwidth % [] 604853 |GBisec
. ——— L3 Bandwidth % [0 (11708 |aessec
and funCt|0nS o (282 ‘ DRAM Bandwidth ¥ M 22485 |GBisec

SP Vector FMA Peak
SP Vector Add Peak
DP Vector FMA Peak

ngh |eve| Of _ DP Vector Add Peak

Scalar Add Peak

customization T [

0.01 Loop Weight Representation ~ Cancel Default

7576.52 |GFLOPS
3788.61 GFLOPS
3788.52 |GFLOPS
1894.44 |GFLOPS
255.87 GFLOPS

NEKKER
odr®O0O

0.01 0.1 1
Physical Cores: 48 @ App Threads: 48 © Self Elapsed Time: 7.500s Total Time: 330.067 s) Qima Color 2

Software

Intel® Advisor New Feature: Roofline Compare

R Ql M o« X ¢ly v | Cores: 48 0n2socket(s) @ v ||V Default: FLOAT v || 4 2 Compared Results 4 |) =
: 755945 | @ = P— > <]
M o namamiatii :QFY-.-
See multlple o . - ol oosappeezziil % Compared results x |0 ;
rooflines on 1o curent [one?
one chart! O adv-baseline_LLC |
Ready for comparison
adv - soa_DRAM
Track your adv - soa_LLC
Opti mization adv - vectorized_DRAM
-))
progress | adv - vectoriized LLC
0.046 - adv - [tensity)
AN LU
331

0.011
Z Physical Cores: 48 ©® App Threads: 96 @ Self Elapsed Time: 3.742s Total Time: 389.748 s

We would love to know what you think of this new feature!
Email vector advisor@intel.com and give us your feedback!

Copyright © Intel Corporation 2019 intel"

*Other nam laim h

Software

mailto:vector_advisor@intel.com

Intel® Advisor roofline
demo

Tuning a real world

Example with Roofline

A Walk-through of the Optimization Process

Pica Library

pica is a C++ kernel library for particle-in-cell plasma simulation

The main routines are implemented for 1D, 2D and 3D Cartesian coordinates,
are optimized and OpenMP-parallelized for multicore CPUs

Get the code of benchmarks from
https://github.com/pictools/pica-benchmark

Work based on V. Volokitin, I. Surmin, S. Bastrakov, |. Meyerov
Lobachevsky State University of Nizhni Novgorod, Russia

https://github.com/pictools/pica-benchmark

Pica Application

For each level of our optimization, we will do 2 runs:

= LLC:
O1-app --nparticles 320000 --niterations 10000

= DRAM:
O1-app --nparticles 3200000 --niterations 1000

Step #1: Get baseline

A QM « X lyv | Cores: 48 on 2 socket(s) @ HY Default: FLOAT ||5I‘5 2 Compared Results v | D =
SF vector FMA Feak: /5b99.45 GFLUFS,

7859451 § PSPPI S et R
@) 2 eIl . _gp-=22220 DF Vector EMA Peak: 3774.85- GFLQFES2.

: BlseC __.---"""7 PP DP Vectoy Add Peak: 1889.3 GFLOPS,

v e 2,288 GBI oo 2
LLC 1BandW\d“l'---'f-"" I ___.----"""Scalar Add Peak: 321.81 GFLOPS

L2 Ba‘l(.’.\'f‘fiﬁ‘

Baseline 0.48s 6.49s 11015, GBISEE ===~ !

L3 Band\y@}\}:_lf)19

| | LLC run ° r
[] L A—
O DRAM run 0.046 - FLOP/Byte (Arithmetic Intensity)
= 0.011 A 3.31
Physical Cores: 48 © App Threads: 96 9 self Elapsed Time: 3.742s Total Time: 389.748 s

@) Assumed dependency present

The compiler assumed there is an anti-dependency (Write after read - WAR) or a frue dependency (Read after
write - RAW) in the loop. Improve performance by investigating the assumption and handling accordingly.

Confirm dependency is real
Run the Dependencies analysis to identify real data dependencies

There is no confirmation that a real (proven) dependency is present in the loop.

Copyright © Intel Corporation 2019

*Other nam nd br;

Step #2: Vectorize main bottleneck loop

A QM &« X Iy v ’ Cores: 48 on 2 socket(s) @ ||Y Default: FLOAT v ||5I’- 2 Compared Results v ‘ =
LLC 7558 23 L 21 _VELWI | WA LEaR. 190020 D1 LW 2

Elapsed tlme 0_3755 s P = : ; S R B_-"E}‘SP%C or-Add Peals '3'7'7'_8;68"GFE@1 ')"

9 d Peak: 321.7 GFLOPS’
3 pandWiclt

Baseline 0.48s 6.49s

s

4
L ..

- FLOP/Byte (Arithmetic Intensity)
T

Vectorized 0.375s 5.78s

0.0031 ' "
% Physical Cores: 48 © App Threads: 96 @ Self Elapsed Time: 4123 s Total Time: 281.765
D LLC run
O DRAM run Vectorized Loops

Vector ISA | Efficiency Gain ..., VL (Vector Length) | Compiler Estimated Gain

Main loop is now vectorized but at only 37% efficiency. We need to investigate this!

Copyright © Intel Corporation 2019

*Other nam nd br; laim

Step #3: Overcome memory bottlenecks

Vectorized Loops

Vector ISA | Efficiency Gain ...| VL (Vector Length) | Compiler Estimated Gain
AVX512 ||

As previously mentioned, we are currently
only vectorized at 37% efficiency. There are
several features in the Intel® Advisor

survey that can assist in our analysis. @ Performance Issues

You can also see a Performance Issue
flagged.

Source | Top Down Assembly | ‘¥’ Recommendations

Under the Code Analytics tab, you can see <
all of the instruction traits the compiler Traits ®

- Diviei
used in our loop. VISIONS .

Square Roo{s
Gathers
Shuffles ™

Blends ™

FMA

2-Source Permutes

Scatters "

Copyright © Intel Corporation 2019 ‘ |nte|

*Other names and brands may be claimed as the property of others. 0

- 1 Software

Overcome memory bottlenecks

To overcome our vector inefficiency and make more effective use of our caches, we
reorganized our data structure to use Structures of arrays instead of an array of structures.

Doing this gives us a unit stride access.

SoA

AoS

Copyright © Intel Corporation 2019
*Other names and bran i

Overcome memory bottlenecks

A QM « % Iy v | Cores: 48 on 2 socket(s) @ . || 'Y Default: FLOAT ~ || &2 2 Compared Results v | € =
6214 54 - S
» 222l .mv oo 358laeAdT Peak: 32191 GFLOPS
Baseline 0.48s 6.49s

Vectorized 0.375s 5.78s

Memory 0.34s 5.77s % U y
0.0054 - FLOP/Byte (Arithmetic Intensity)
D LLC run > 0.0043 B 61.77
Physical Cores: 48 © App Threads: 96 2

() DRAM run

Copyright © Intel Corporation 2019 ‘ intel
*Other nam laim 2

D——/—D Software

Step #4: Optimize instructions

Use the Code Analytics, Assembly and Recommendations tabs to do a deep dive into the instructions we are
using and to get advice on optimizing our code.

. Divisions and square roots take significant time
* Fast reciprocal instructions could improve performance

’ Address ’ Line ‘ Assembly | Total Time ‘ % ’ Self Time ’ % ’

0x40906f 105 vfmadd213pd %zmm?24, %zmm22, %k0, %ezmm22 0,500s | 0,500s | FMA
0x409075 105 vsqrtpd %ezmm?22, %k0, %zmm22 0,677s | 0,677s) Square Roots
0x40907b 107 vdivpd %zmm22, %zmm18, %k0, %zmm23 5,779s | 5,779s 0 ‘Divisions
0x409081 108 vmovupsz (%r10,%r13,8), %k0, %ezmm22 4,480s | 4,480s 0

0x409088 108 vfmadd231pd %zmm23, %zmm?25, %k0, %zmm22 0,010s | 0,010s | FMA

All Advisor-detectable issues: C++ | Fortran

a Unoptimized floating point operation processing possible
Improve performance by enabling approximate operations instructions.
Enable the use of approxi division instr

Static analysis presumes the loop may benefit from using approximate calculations. Independent dividors will be pre-calculated and replaced with multiplicators. To fix: Fine-tune your usage of the
following compiler option:

Enable the use of approximate sqrt instructions
Static analysis presumes the loop may benefit from using approximate sqrt instructions, but the precision and floating-point model settings may prevent the compiler from using these instructions.
To fix: Fine-tune your usage of the following compiler option:

Copyright © Intel Corporation 2019

*Other nam nd br;

Optimize instructions

Divisions: recompile with —no-prec-div

Line Source Total Time | % | Loop/FunctionTime | % Traits
97 double uprimeY = umY¥ + umY¥ * tX - umX * t3; 1,160s) FMA
98 double uprimeZz = umZ + umX * tY - umY¥ * tX; 0,080s | FMA
99 cf =2.0 / (1.0 + £X * tX + tY¥Y * tY + t2 * tz); 4,279s 1 Appr. Re...
100 double sX = tX * cf; 0,650s)
101 double sY = tY * cf; 0,100s |
Selected (Total Time): 4,279s
< >
od el S = 0 ed 0a p!IOx408a
Address | Line Assembly Total Time | % |SelfTime| % Traits
0x40925a 99 vfmadd231pd %zmm3, %zmm3, %k0, %zmm20 0,010s 0,010s FMA
0x409260 99 vfmadd231pd %zmm4, %zmm4, %k0, %zmm20 0,080s 0,080s FMA
0x409266 99 vrcp14pd %zmm20, %k0, %ezmm’1 0,649s | 0,649s) Appr. Re...
0x40926c 99 vfnmadd213pdq 0x24ce2(%rip){1to8}, %ezmm1, %k0, %zmm20 1,320s 1,320s | FMA
0x409276 99 vfpclasspd $0x1e, %zmm1, %k0, %k0 0,590s 0,590s

Inverse square roots: use the invsgrt call from SVML

Copyright © Intel Corporation 2019

*Other names and brands m laim he property of others.
{1 Software

Optimize instructions

Q"M « % (13 v | Cores: 48 on 2 socket(s) @ HY Default: FLOAT v ||51z 2 Compared Results v | D =
s858] © SE Vector FMA Feak: /55858 GFLUFS,
255814 -8 =P Vector FMA Peak: 3777.2 GFLOPS.,
LLC 5 _________ s . SP. Vqtgtgt Add Peak. 37785 GFLQP -
8 - _.DP- Véctor Add Peak: 1889.38
: 6 GFLOPS

Baseline 0.48s 6.49s

Vectorized 0.375s 5.78s

Memory 0.34s 5.77s | ’
I
Optimized 0.30s 5.59s
1.03 S FLOP/Byte (Arithmetic Intensity)
] 0.00098 h 23.65
Physical Cores: 48 © App Threads: 96 9 self Elapsed Time: 5.348 s Total Time: 410.772 s
D LLC run
() DRAM run

Copyright © Intel Corporation 2019 ‘ intel
*Other nam i =

D——/—D Software

Results

1-Baseline 0.48s 6.49s
2-Vectorized 0.375s 5.78s
3-Memory 0.343s 5.77s

4-Optimized 0.30s 5.59

Copyright © Intel Corporation 2019

*Oth laim

Summary

You need to optimize for both compute and memory

The Roofline chart is a powerful feature to visualize your compute and memory
bottlenecks

Intel® Advisor plots Roofline charts automatically and provides various
additional analysis and recommendations to guide optimizations

The Intel® Advisor’s Roofline Compare feature lets you easily test different
configurations

Copyright © Intel Corporation 2019
ol rnam n i

Next Steps & Resources

Download Intel® Advisor and start optimizing!

Intel® Advisor - Home Page

Intel® Advisor Roofline

Intel® Advisor Cookbook

https://software.intel.com/advisor/choose-download
https://software.intel.com/en-us/advisor
https://software.intel.com/en-us/articles/intel-advisor-roofline
https://software.intel.com/en-us/advisor-cookbook

Legal Disclaimer & Optimization Notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING

TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF
ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel
Corporation in the U.S. and other countries.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

AT

D——/—D Software

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice

QUESTIONS AND ANSWERS

