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Asteroid Impacts
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Asteroid Impacts - Examples
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Predictability
- Temporal
- Spatial
- Consequences
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Asteroid Impacts - JPL Risk Page
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https://cneos.jpl.nasa.gov/sentry/

https://cneos.jpl.nasa.gov/sentry/


Example Risk Page
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https://cneos.jpl.nasa.gov/sentry/details.html#?des=2005%20ED224

https://cneos.jpl.nasa.gov/sentry/details.html


Predictability
- Temporal
- Spatial
- Consequences
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Impact Corridors
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2019 PDC Impact Corridor
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• Potential impact locations
• Which regions might be affected?
• Which are not?

• Impact conditions
• Speed
• Angle

• Enables further analysis



Predictability
- Temporal
- Spatial
- Consequences
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PAIR - Probabilistic Asteroid Impact Risk
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Impact Consequences
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PAIR Consequence Predictions High Fidelity Simulations

D. Robertson, et al. 2019

M
. Aftosm

is, et al. 2019



Deflection Mission
- Mechanics
- Heritage
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Deflection Scenario
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• An asteroid is on a collision course with Earth
• It’s possible to change the orbit of asteroids.
• Goal: Instead of hitting the Earth, let it fly past



Deflection Scenario
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Kinetic Impactor



Deflection Scenario
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ΔV

Kinetic Impactor



Deflection Mission
- Mechanics
- Heritage
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Deep Impact 2005
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https://commons.wikimedia.org/wiki/File:HRIV_Impact.gif

• Scientific mission by NASA in 2005

• Excavate sub-surface material by impact

• Evaluate sub-surface material using 
spectroscopy

• Equivalent to kinetic impactor
• But:

• Target was large: ≅ 5 km
• No measurements on trajectory change

https://commons.wikimedia.org/wiki/File:HRIV_Impact.gif


NASA DART
• Launch on July 22nd 2021

• Dedicated planetary defense 
mission

• Change orbit of “Didymoon”

• Target size: ≅ 170 m

• Measure orbit change

• Measure momentum 
enhancement factor β
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https://www.nasa.gov/planetarydefense/dart

Didymoon

Didymos

https://www.nasa.gov/planetarydefense/dart


Deflection Mission Caveat
• The impact point ”moves” over the surface of the Earth before 

being fully deflected
• The outcome of a deflection mission is uncertain because many 

of the problem’s properties are uncertain
• Orbit uncertainty
• Physical uncertainty
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Uncertainty
- Physical
- Orbital
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Physical Uncertainty
• The effect of a deflection mission is highly dependent on 

physical properties of the asteroid
• Conservation of Momentum (size, density uncertainty of 

asteroid)
• Physical properties drive momentum enhancement factor β
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Deflection Scenario
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ΔV

Kinetic Impactor



Deflection Scenario
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ΔV
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Physical Uncertainty
• The effect of a deflection mission is highly dependent on 

physical properties of the asteroid
• Conservation of Momentum (size, density uncertainty of 

asteroid)
• Physical properties drive momentum enhancement factor β
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Beta factor explanation
• Beta factor is an important concept for kinetic impactor 

deflection
• Depends on physical properties such as strength and porosity
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Beta factor explanation
• Beta factor is an important concept for kinetic impactor 

deflection
• Depends on physical properties such as strength and porosity
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Beta factor explanation
• Beta factor is an important concept for kinetic impactor 

deflection
• Depends on physical properties such as strength and porosity
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𝑚, 𝑣

M, ΔV

ΔV = 𝜷
𝑚

𝑚 + 𝑀
𝑣

Excess kinetic energy ejects 
material that provides extra 

impulse

Current estimates of 𝜷 are in the range [1,10]
We used a semi-empirical equation from Lawrence Livermore 
Labs based on hydrocode impact simulations



Uncertainty
- Physical
- Orbital
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Orbit uncertainty

Clemens Rumpf 36

• ”Envelopes” the possible “positions” 
(states) of the the asteroid at a given 
time

• Real asteroid is only in one location 
corresponding to one impact location 
within impact corridor

• Real location determines new impact 
location due to a given deflection 
mission



2019 PDC Deflection Study
- Simulation setup
- Impact Risk
- Results
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ΔV

Deflection Analysis Process

PDC 2019

Draw a sample from physical property distributions 
based on current knowledge state

Sample orbit solution and identify orbit 
solution region that impacts the Earth 

Propagate Earth impactors to 
deflection epoch

Impose deflection ΔV according to mission design 
and current physical property variation

Propagate deflected samples to the Earth

Simulate impact and record casualties

ΔV

Repeat N times

ΔV

Property Distributions

Scenario Outcomes



Impact Risk
Risk = (Casualty # | Impact)✖ Impact Probability

• Metric to capture risk level

• Combines nicely the consequences of a potential impact with 
the probability of it happening

• Unit is “number of affected people”
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Day 2 Deflected Corridor
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Deflection Impact Probability [%] Risk [affected people]

Without 10.7 35 k

With 1.7 (-84 %) 10 k (-72 %)



Day 2 Casualty Histogram
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Day 3 Deflected Corridor
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Deflection Impact Probability [%] Risk [affected people]

Without 100 302 k

With 30.7 (-69.3 %) 145 k (-52 %)



Day 3 Casualty Histogram
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Realized Beta Values
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𝜷 was in range ≅ [1.5, 3.3] in this study (for what it is worth)



Scaling Deflection Missions for Success
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• How to achieve “successful” deflection in uncertain environment?
• One approach: Define a risk reduction level you are comfortable with
• For example 99.9 % risk reduction 



Scaling Deflection Missions for Success
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• How to achieve “successful” deflection in uncertain environment?
• One approach: Define a risk reduction level you are comfortable with
• For example 99.9 % risk reduction 

• 99.9 % risk reduction 
achieved with ≅ 4.5 scaling 

• Could be achieved with 4.5 
times heaver deflection 
spacecraft

• Or by sending 5 of the 
original deflection 
spacecraft



Summary
• Asteroid impacts are special natural disasters due to their

• Predictability (time, location, consequences)
• Preventability (deflection missions)

• Introduction to deflection missions
• Uncertainties let deflection outcomes vary
• Results show that deflection missions might be unsuccessful 

and only move impact location
• Could make situation worse

• Considering uncertainties allows to determine deflection scaling 
factor to increase success probability to comfortable levels
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Thank You
Clemens Rumpf
Clemens.rumpf@nasa.gov
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