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§ Limited success of steady state RANS (including SMCs) for 
problems where mean-flows are strongly influenced by 
dynamics of large scales of turbulence (Chaouat, 2017)

§ Struggle with predictive RANS of juncture flows was 
acknowledged in past AIAA workshops (DPW, HLPW, etc.)

§ LES captures geometry/boundary influenced large scales but 
has a prohibitive cost scaling for TBLs (Spalart, 1997; Choi & 
Moin, 2012)

§ Methods that combine advantages of RANS and LES are 
naturally suited to handle high Reynolds number non-
equilibrium wall turbulence (Cabot & Moin, 1999; Spalart, 
2000)

§ Rapid growth of interest in hybrid approaches 

Scale-resolving simulations – Background 
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Change in annual papers 
published on “hybrid-

RANS/LES” 

Figure taken from Heinz (2020), 
Progress in Aerospace Sciences
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Corner/junction flows – Background 
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§ Problem with linear eddy viscosity closures (𝜏!" = −2𝜈#𝑆!" +
$
%
𝑘𝛿!") – no secondary flow permitted

§ Non-linear corrections (such as Spalart’s QCR) are needed
§ Rumsey et al. (2017-2020) have reported some success with QCR for juncture flow
§ Recent work by Modesti (2020) did a-priori analysis for duct flow in terms of Pope’s (1975) general 

tensor expansion; showed promising agreement for QCR-2000

downstream

Schematics taken from 
Hazarika, et al. (1989)

Phenomenology by Perkins (1970), 
Hazarika et al. (1989), Gand et al. (2011)
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Q-isosurfaces: colored by abs. vorticity
Particles:  colored by Ux

4LAVA-WMLES
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Simulations based on 
experiments performed 
in the NASA Langley 
14x22 ft. tunnel

Visualization generated by: Timothy Sandstrom 
(NASA Ames Research Center)

5LAVA-WMLES
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§ DDES and known deficiencies 
§ WMLES and known deficiencies 
§ Structured curvilinear overset grid systems
§ Numerical scheme
§ Results – comparisons with experiment* 
§ Computational Cost
§ Summary

Outline 

*Comparisons made with experimental measurements 
(LDV) by Kegerise & Neuhart (2019)
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DDES 
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§ Basic philosophy: 
Would like to use RANS everywhere, but no robust model for 
separated flows; so switch to LES in free-shear layers and 
separated flows (detached boundary layers)

§ Success of the method relies on a robust ”indicator function” 
which informs the switch to LES 

§ Present work uses Deck’s (2012) Mode-II definition

§ Present work uses cube-root-volume for LES length scale, although 
alternate vorticity-based form available
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DDES 
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§ Known failure mechanism: Modelled 
Stress Depletion (MSD)

§ Indicator function detects a switch to LES 
for attached boundary layers if 𝛿!" >
𝐶#$%Δ&

§ Lack of any resolved turbulence results in 
sudden drop in total stress

§ Unphysical TBL profiles result and cause a 
drop seen in skin friction for flat plate BLs

• Recent solution by Deck et al. (2020) appears to be a promising 
• Other Hybrid-RANS/LES techniques such as ZDES were tested initially; 

adequate resolution requirements were cost-prohibitive 

Figure taken from Deck et al., 2020
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WMLES
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§ Basic philosophy: 
Would like to use LES everywhere but cannot resolve integral length scales for the inner-layer of 
a TBL at high Reynolds numbers; so use replace stiff-Dirichlet BCs with a wall-stress BC instead 
and compute the wall-stress using a RANS model.

§ Basic principle first introduced in 70s and 80s (Deardorff, Schumann, Moeng, etc.) for atmospheric boundary 
layers; stress computed using wall-functions for rough-walls

§ Idea generalized for engineering flows by solving TBLE to predict wall-stress (Balaras & Benocci, 1994; Cabot 
& Moin, 2000; Kawai & Larsson, 2013; Park & Moin, 2014) 

§ Recent reviews by Larsson et al. (2016) and Bose & Park (2018) cover other alternate formulations

§ Success of the method relies on numerical discretization and SGS closure beyond just the wall-
model 

§ Equilibrium assumption simplifies the TBLE to a system to an ODE (low-Mach, adiabatic)

• Instead of assuming a damping law (van-Driest for example) for 𝜈!(𝑦), one can 
directly assume an algebraic solution (wall-function) to the ODE
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WMLES
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§ Challenges related to corner flows: 
§ Exchange location typically 2nd off-wall compute 

point or higher; issue at corners
§ Is the non-equilibrium physics in the corner 

sufficiently resolved for equilibrium WM? 
§ Vane & Lele (2015) proposed modifications to 

matching location (Buleev); however showed 
sensitivity to eddy viscosity model

§ Recent work (Wu et al., 2018) suggests damping 
SGS constant near corners alleviates the issue 

§ Ongoing work on development of RANS-informed 
SGS closure near-corner (inspired by Shiyi Chen’s 
CLES)

§ Present formulation: 
§ Algebraic WM based on Musker’s wall-function; heat 

transfer using Kader-law (inapplicable if adiabatic)
§ Exchange location at second off-wall compute node
§ Additional considerations needed for node-based 

discretizations
Figure taken from Vane & Lele, AIAA, 2015

Overprediction 
of wall-stress in 
the corner
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Overset Grid System
§ Grid system used for RANS is re-used for DDES*

§ Medium and Fine RANS meshes satisfy the DDES grid quality criteria (Spalart
et al., 2006)

§ Preliminary studies with physics-informed DDES meshes did not produce 
qualitative differences

§ Industry usage of DDES typically relies on RANS-type meshing with no 
attention to LES requirements

§ Early attempts at ZDES (Mode III) were projected to use > 1E9 grid 
points due to both y+ and span & stream spacing restrictions (similar 
grid requirements expected for IDDES)
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* RANS meshes generated by Henry Lee (ARC); Lee & Pulliam (AIAA-2019-0080)
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Overset Grid System for WMLES
§ Both fuselage and wing tripping represented; early boundary layer growth 

resolved according to “points-per-delta” based metrics (Larsson et al., 2016)
§ Tripping dots represented using a penalty (immersed boundary) method
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Overset Grid System for WMLES
§ Aspect ratios constrained to stay under 7 across the fuselage
§ Refined mesh to reduce the streamwise spacing and decrease aspect ratio to 

<3
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Refined mesh

Juncture region wall 
spacing: 0.25mm

Fuselage wall spacing: 
0.50mm
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Overset Grid System for WMLES
§ Off-body grid generated as a Cartesian overset mesh
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Overset Grid System
§ Summary of overset grid systems simulated (full-span)
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WM-RANS results reported in AIAA-2020-2735

*Numbers reported are in million grid points
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Numerical discretization
§ Convective flux discretization uses

§ Primitive variable interpolation to the half-points
§ Blending between 2nd order centered and 1st order upwind
§ Blending between 4th order centered and 3rd order upwind

§ Modified version of Roe numerical flux (Housman et al., 2009)
§ Nodal flux derivative uses 2nd order central (staggered) or 4th order combined 

nodal/staggered differentiation
§ Time discretization using BDF2 for DDES

§ Uses a dual-time stepping scheme
§ Linearized system solved with ILU(0)-GMRES

§ Time discretization using TVD-RK3 for WMLES
§ More details provided in AIAA-2020-2735

16
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§ Comparisons with LDV probes
§ Velocity profiles
§ Cross-correlations (cross-stresses, single-point) – Resolved+Modeled components 
§ Variances (normal stresses, single-point) – Resolved components

§ Sectional pressure coefficient (cp)
§ Only the most inboard section considered
§ All simulations are accurate for all outboard stations, except near wing tips

§ Steady state RANS simulations using SA-RC-QCR2020 (Rumsey et al., AIAA J., 2020) used as reference 
to assess improvements over RANS 

Comparisons with experiment 
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Probes considered for analysis: 
• 1 probe on the fuselage
• 2 probes in the horn region 
• 15 probes in the juncture region

Only a subset discussed in subsequent 
slides
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• No-grid sensitivity seen in the 
fuselage boundary layer

• RANS simulations are not 
tripping-aware
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Fuselage probe 
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• DDES solutions on Coarse and 
Medium meshes are identical 
to RANS solutions
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Fuselage probe 
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Spurious outer-layer 
inflection point upon grid 
refinement

• RANS-style grid refinement 
leads to deterioration of 
outer-layer accuracy 

• However, no effect on cf
• (More on this when we 

consider profiles at the horn)
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Fuselage probe 
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Improvement in outer-
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• WMLES is tripping-aware
• Outer-layer profile is sensitive 

to characterization of tripping
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Horn Probe 
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• BL thickness grown to about 25-30mm
• RANS shows little grid-dependency; 

more accurate outer layer for finer mesh
• Minor tunnel effects seen in terms of 

upwashSystematic 6% error 
due to tunnel effects 
(Lee et al., AIAA, 2018)

Horn Probe 1 (x= 1859.2mm, z = 55.05mm)
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Horn Probe 
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completely deteriorated; 
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Medium-grid solution starting 
to show a spurious inflection; 
solution at wall is unaffected

Horn Probe 1 (x= 1859.2mm, z = 55.05mm)
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Horn Probe 
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DDES (SA-RC-QCR2000)
Horn Probe 1 (x= 1859.2mm, z = 55.05mm)
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zero on all 3 grids

BL thickness from experiment

Medium mesh

Fine mesh

Coarse mesh

Medium mesh appears to produce “best solution” due to a fortuitous 
combination of mesh and fuselage length/wing placement! 
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Juncture Probes at x=2747.6mm
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20% momentum 
overshoot

QCR2020 correction 
increases momentum in 
the corner

Experiment shows 
an infection point 
developing

RANS predicts a 
canonical attached BL
No QCR sensitivity
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DDES (SA-RC-QCR2000)

1mm from fuselage wall
(y = -237.1mm)

30mm from fuselage wall
(y = -266.1mm)

DDES – shows an 
improvement over the 
RANS solution

Near-wall momentum 
overshoot 

Fine mesh solution 
contaminated by 
upstream MSD

Reduction in fuselage 
BL momentum 
overshoot
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WMLES (Sigma SGS, exchange location=0.5mm)

1mm from fuselage wall
(y = -237.1mm)

30mm from fuselage wall
(y = -266.1mm)

Very minor sensitivity 
to grid 

Reducing grid aspect ratio, 
streamwise spacing reduces 
momentum overshoot

Reduction in fuselage 
BL momentum 
overshoot

Reasonably accurate 
prediction of the inner 
layer (z<1.5mm)
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WMLES (Sigma SGS, exchange location=0.5mm)

1mm from fuselage wall
(y = -237.1mm)
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Juncture Probes at x=2747.6mm

WMLES – predicting 
excess slip in cornerDouble 

features

Reasonably 
accurate fuselage 
BL cross-stress
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DDES (SA-RC-QCR2000)

1mm from fuselage wall
(y = -237.1mm)
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Outer feature 
missed by DDES. 
Not resolved until 
post separation.

100% of stress 
modelled; 0% 
resolved
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Secondary flow in the corner (Rumsey et al, 2020)

RANS (SA-RC-QCR 2020), Fine Mesh WMLES, Refined Mesh

Juncture Probes at x=2747.6mm

Probe location Probe location

WM exchange planes
(0.5mm off-wall)

Inner feature Inner feature
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Juncture Probes at x=2852.6mm
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Momentum overshoot in 
the corner; grid 
refinement increases 
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QCR2020 does not

RANS predicts a 
reasonable agreement
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Juncture Probes at x=2852.6mm
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Momentum 
overshoot reduced 

Medium mesh shows 
inflectional behavior 
consistent with experiment

MSD – contamination 
in Fine mesh leads to 
early separation

Spurious behavior 
due to MSD 
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Juncture Probes at x=2852.6mm
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QCR-2000 correction 
underlying RANS 
closure improves early 
onset prediction for 
uncorrected closure

Spurious MSD 
shows sensitivity 
to RANS closure
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Juncture Probes at x=2852.6mm
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DDES (SA-RC-QCR2000): Underlying RANS closure

1mm from fuselage wall
(y = -237.1mm)

30mm from fuselage wall
(y = -266.1mm)

Damping function keeps the solution in 
RANS mode in the corner

RANS closure sensitivity is expected 

Switch to LES in 
attached BL 
leading to MSD
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Juncture Probes at x=2852.6mm
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Juncture Probes at x=2852.6mm
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Juncture Probes at x=2852.6mm
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Juncture Probes at x=2892.6mm
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Juncture Probes at x=2892.6mm
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Juncture Probes at x=2892.6mm
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Juncture Probes at x=2892.6mm
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Juncture Probes at x=2922.6mm
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Juncture Probes at x=2922.6mm
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Juncture Probes at x=2952.6mm
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Juncture Probes at x=2952.6mm

45

-0.2 0 0.2 0.4
Normalized Velocity

-40

-30

-20

-10

0

10

z 
(m

m
)

Baseline Mesh
Refined Mesh
Experiment

1mm from fuselage wall
(y = -237.1mm)

-0.5 0 0.5 1
Normalized Velocity

-30

-20

-10

0

10

20

z 
(m

m
)

Baseline Mesh
Refined Mesh
Experiment

30mm from fuselage wall
(y = -266.1mm)

Large persistent 
error due to 
delayed separation

WMLES (Sigma SGS model, exchange location=0.5mm)

Fairly accurate 
prediction 



NASA Ames Research Center (ARC)

CP predictions - DDES
Fine mesh DDES predicts early onset of separation but both coarse and medium 
mesh DDES  show improvements over RANS 
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§ Representation of wing-tripping dots changes cp prediction on suction side
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Computational cost 
§ Steady-state RANS (QCR-2000)

§ Additional stiffness with QCR-2020 (Rumsey et al., AIAA J., 2020)
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Computational cost 
§ DDES 

§ Initialized from steady-state RANS
§ Initial spin-up for about 5 CTUs and averaged over 20 CTUs

§ WMLES
§ Initialized from a WM-RANS steady state to speed up transience and potential flow development
§ Initial spin-up for 7 CTUs  and averaged over 20 CTUs (left/right wings serve as two ensembles)
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Summary 
§ Scale resolving simulations of the juncture flow experiment performed using a) DDES 

and b) WMLES; comparisons with experiment and RANS SA-RC-QCR2020 
§ Both WMLES and DDES appear to show improvements over steady-state RANS
§ DDES solutions degrade with grid refinement due to modelled stress depletion; the 

good agreement seen on the medium RANS grids due to fortuitous circumstances 
§ Lower numerical dissipation appears to improve the DDES results; although marginally
§ DDES simulations with QCR-2000 based correction in the underlying RANS is needed to 

adequately predict separation; SA-RC based DDES predicts early onset of separation
§ Velocity profiles from DDES at the outboard LDV location (y=-266.1mm) show large 

effects of MSD and are inadequate at predicting skin friction
§ WMLES profiles show promising agreement with experiment at most outboard LDV 

probes and the inboard LDV probes just prior to onset of separation
§ WMLES shows a persistent streamwise momentum overshoot in the corner (consistent 

with work by Lozano-Duran et al. (CTR) and Iyer & Malik (NASA Langley)
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Summary 
§ Bubble length predicted by WMLES is smaller than observed (98mm for the refined 

mesh; 84mm for the baseline mesh)
§ Less dissipative Sigma SGS model leads to better results than constant coefficient 

Vreman model
§ Resolution of secondary flow appears to be critical in predicting accurate onset of 

separation; unclear if only improvements in SGS modeling will help - more resolution is 
likely needed

§ Both DDES and WMLES cost at least an order of magnitude more than LAVA steady 
state RANS on overset meshes; but comparable with some other steady state RANS 
reported on O(100M) size meshes 

§ Results highlight the need for more fundamental canonical test problems to study 
corner flow separation using WR-LES or DNS
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Questions? 
§ Contact information

§ Aditya Ghate (aditya.s.ghate@nasa.gov)
§ Cetin Kiris (cetin.c.kiris@nasa.gov)
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