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The basics
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• Commercial aircraft - reduce cost, increase comfort
• Military aircraft - high-speed maneuvers, stealth
• Environmental factors - carbon emissions, noise

Lockheed L-1011 Tristar



5

Increase lift/reduce drag

Increase fuel 
efficiency

Reduce noise
Improved flow 
conditions

Stability

The basics
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Flow separation

Fuel 
atomization

Pressure 
fluctuationsFlow 

separation
Flow 
separation

The basics



Flow control
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What is flow control?
Alter flows to achieve a desired effect

• Passive flow control – geometrical changes, no/little energy required
Flaps and slats



Flow control
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What is flow control?
Alter flows to achieve a desired effect

• Active flow control – dynamic actuators, requires energy input
Suction/blowing



The focus

9

Engines



The focus – Active flow control
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Engines

Diffuser 
(separation control)

Nozzle  
(Jet noise reduction) Combustor

(fuel atomization control)



Motivation
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• Flow separation in diffusers deteriorate engine performance

S-duct diffuser

Image courtesy: www.patentbuddy.com

• S-duct – allows the engine to be installed inline with the 
aircraft axis

• Conceals the engine fan – reduces radar cross-section



Motivation
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• Flow separation in diffusers deteriorate engine performance

• Reduce flow unsteadiness leading to improved flow into the
compressor/fan

• Reduce stagnation pressure loss at the diffuser exit



Control of vortex shedding
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50 ramp diffuser with a Mach 0.65 inflow

Mahesh Natarajan, Jonathan B. Freund, and Daniel J. Bodony., Actuator selection and 
placement for localized feedback flow control, Journal of Fluid Mechanics 809 (2016) 775-
792

Actuator/sensor



Motivation

14

• Naval aircraft are extremely loud, people are close to the aircraft

Image courtesy: Reuters



Noise reduction of a Mach 0.9 turbulent jet
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Loud

Quiet



Effect on radiated noise - OASPL
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4 dB



Controlling complex flows
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Nearly every flow control effort starts with this statement:
We had this type of controller available and guessed that it 
should be placed here

• We argue that it is better to let the flow system tell you how it 
wants to be {changed, observed, controlled} for a given goal

Primary objective:
Develop an efficient method for rationally selecting co-located 
actuator/sensor type and location for controlling a compressible 
viscous flow



Outline of the strategy
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Basic Idea - I
Place the controller at the location in the flow-field that is 
most responsive to perturbation

• The linearized Navier-Stokes equations in discrete form is 

Basic Idea - II
Global modes contain receptivity information

• Using linear feedback 

Question
What should be       that changes the eigenstructure of     to 
optimize a given objective (eg. noise reduction)



Outline of the strategy
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• We formulate the problem from a global mode perspective

• The change in      is related to        :  

• The operator change        is parametrized as (in 3-D)

which localizes the control at point                        and permits 
different actuator/sensor pairs 



Outline of the strategy
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• What we then seek are the 
that alter the eigenstructure optimally w.r.t the objective function –
reduce the growth rate of the target mode(s). This is a simple 
optimization problem:

Optimization statement

which tells us

- Where to place the actuator
- How big the actuator needs to be

- What quantity to force

- What quantity to sense
- The gain



Linear feedback control
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• The NS equations are (in discrete form)

• Linear feedback control is a forcing term proportional to the flow 
perturbation 

• Linearization and using the global mode assumption 

• Eigenvalue sensitivity is 

• Optimize         to affect a particular flow mechanism – gives the 
controller 



Control formulation
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Governing Equations
dQ
dt =R̃(Q)

Baseflow Solution (Q̄)
(equilibrium or time-average)

Linearization
dQ′

dt =L(Q̄)Q′

Global
Mode Solver

L(Q̄)Q̂ = ωMQ̂

Structural Sen-
sitivity Analysis

(most sensitive region)
δω

PETSc
(build the
matrix)

SLEPc
(solve the EVP
using IRAM)

Forward
Global

Modes (Q̂)

Adjoint
Global

Modes (Q̂†)

Optimization
(obtain sensor/actuator)

Linear Feedback Control
dQ
dt = R̃(Q) + αC(Q− Q̄)

︸ ︷︷ ︸
Forcing F (x,t)

Controlled Simulations
(for different gain (α) values)

Control
Trends

Flow Vi-
sualization

Modal
Analysis
of Control

POD
Analysis

Q′= Q̂(r, z)eimθ+ωt



Axisymmetric jet – flow conditions and BCs
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Isothermal nozzle Centerline

SAT far field

z/R
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/
R

S
p
o
n
g
e

S
p
o
n
g
e

Sponge

Target Ω

• Isothermal nozzle with 



Axisymmetric jet – Time-average
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• The time average baseflow was computed from the 
direct numerical simulation

T/T∞

r
/
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z/R

Vz/c∞

r
/
R
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Optimal transient response
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• Due to non-normality of the Navier-Stokes operator, growth of
wavepackets is possible for finite time by optimal transient response
(OTR) (Schmid & Henningson 2001)

• OTR is a suggested mechanism for sound propagation to the far-field
(Nichols and Lele 2011)

Radiative wavepacket

• Define the norm:                                              , maximize
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• Due to non-normality of the Navier-Stokes operator, growth of
wavepackets is possible for finite time by optimal transient response
(OTR) (Schmid & Henningson 2001)

• OTR is a suggested mechanism for sound propagation to the far-field
(Nichols and Lele 2011)
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Optimal transient response

• Define the norm:                                              , maximize
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• Due to non-normality of the Navier-Stokes operator, growth of
wavepackets is possible for finite time by optimal transient response
(OTR) (Schmid & Henningson 2001)

• OTR is a suggested mechanism for sound propagation to the far-field
(Nichols and Lele 2011)
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Optimal transient response

• Define the norm:                                              , maximize



Target eigenvalue and global modes

28

• The range of St -> 0.45 – 0.65 is found to have maximum contribution 
to the optimal transient response

• The target eigenvalue is chosen in the range at St -> 0.55
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Target eigenvalue and global modes
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r
/
R

z/R

Adjoint eigenmode  

r
/
R

z/R

Forward eigenmode  

• The range of St -> 0.45 – 0.65 is found to have maximum contribution 
to the optimal transient response

• The target eigenvalue is chosen in the range at St -> 0.55



Actuator/sensor development
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• Maximum sensitivity close to the nozzle 
• The size and location of the control region is determined as part of 

the analysis, and changes with control-feedback pairs
• “Best” is found to be Vz control with Vr feedback
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Objective function – Target surface r/R = 15
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• The objective function is 
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• The objective function is 
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• The objective function is 



How does the control work – Vortex pairing
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• Vortex pairing is one of the major noise producing mechanisms
in jets

diagram of                       along the lipline
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How does the control work –
Eigenspectrum at low St
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• Global eigenanalysis was performed for the time-averaged flows for 
all cases
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How does the control work –
Eigenspectrum at low St
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• Global eigenanalysis was performed for the time-averaged flows for 
all cases

Quieter flows - Unstable eigenvalues at low Strouhal numbers
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How does the control work –
Eigenspectrum at low St
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• Global eigenanalysis was performed for the time-averaged flows for 
all cases

Quieter flows - Unstable eigenvalues at low Strouhal numbers



How does the control work –
Eigenspectrum at low St
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• Loud flows – Stable eigenmodes with acoustic footprint
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• Quieter flows – Unstable eigenmodes without acoustic 
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How does the control work – Mode amplification
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How does the control work –
POD Analysis
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• Proper Orthogonal Decomposition (POD) analysis of a loud event 
gives valuable insights into the mechanism of control
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• A kinetic energy norm is used for the analysis 



How does the control work –
POD Analysis
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• POD analysis of loud and quiet flows
POD eigenspectrum

Pairing of energetic POD modes occur for quieter flows

Pairing



How does the control work –
POD Analysis

42

• Phase plot of the POD coefficients of energetic modes 
provides insight on energetic flow structures

Quieter flows => Regularized energetic flow structures
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Noise reduction in a Mach 0.9 turbulent jet

43

Isothermal nozzle

S
p
o
n
g
e

S
p
o
n
g
e

Sponge

Sponge

SAT far-field

Target Ω



Time-and-azimuthal average
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• The time average baseflow was computed from the 
large-eddy simulation



Eigenspectrum and global modes
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• Global eigenanalysis is performed on the time-and-azimuthal 
averaged baseline flow
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Eigenspectrum and global modes
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• Global eigenanalysis is performed on the time-and-azimuthal 
averaged baseline flow
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Optimal transient response –
Mode contribution
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• Define the norm:                                              

• Maximize
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Optimal transient response –
Mode contribution

48
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Optimal transient response –
Mode contribution

49
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Actuator/sensor development
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Adjoint Zoom
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O1 - multi-directive mode
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• Forward and adjoint of the eigenmode with maximum contribution
to optimal transient response

• Control region for      control - feedback 
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Noise reduction of a Mach 0.9 turbulent jet
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Loud

Quiet



Objective function – target surface r/D=7
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• The objective function is 



Effect on radiated noise - OASPL
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4 dB



Quieter flow - eigenanalysis
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• Eigenspectrum for time-and-azimuthal average of noise controlled flow
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Quieter flow - eigenanalysis
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• Eigenspectrum for time-and-azimuthal average of noise controlled flow
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Quieter flow - eigenanalysis
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• Eigenspectrum for time-and-azimuthal average of noise controlled flow
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Quieter flow - eigenanalysis

57

• Eigenspectrum for time-and-azimuthal average of noise controlled flow
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Spray control with acoustic excitation
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• Control of primary atomization in fuel sprays in gas turbine
combustors (Funded by the Office of Naval Research)

• High amplitude (12 kPa, 1 kHz) transverse acoustic waves are used

• Sound pressure level of 172 dB
Experiments (Ficuciello et. al. 2017)



Governing equations

59

• Volume of fluid (VOF) method – unsplit, geometric transport (Owkes 2014)

• Fractional step time integrator with implicit handling of the pressure term (Kwatra 2009)

• Stiffened gas equation of state

• Interface reconstruction using Piecewise Linear Interface Calculation (PLIC) –
the liquid-gas interface is reconstructed as a plane in each cell

M. Owkes and O. Desjardins, A computational framework for conservative, three-dimensional, unsplit, geometric transport with application to the volume-of-fluid (VOF) 
method, J. Comp. Phys. (2014) 270, 587-612 
N. Kwatra et al., A method for avoiding the acoustic time step restriction in compressible flow, J. Comp. Phys. (2009)  228 (11), 4146-4161 

Volume of fluid transport

Density for each phase

Momentum for each phase

Total energy for each phase



The all-Mach algorithm
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• Advection step – Semi Lagrangian scheme

No pressure

• Helmholtz equation for pressure

• Intermediate variables are computed - and

• Correction step



Adaptive mesh refinement
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Oct-tree based Block-structured Unstructured

• Loop and cache optimizations can be performed over the arrays of 
cells when using adaptive blocks. 

• Ghost cell to computational cell ratio is superior to other data 
structures. 

• Since the blocks permit refinement of larger multi-cell regions at a 
time, mesh adaptation is required less frequently



The framework of AMReX (LBNL)
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What does AMReX do?
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• Domain decomposition with distribution of grids to MPI processes 
• Logical tiling of grids – reduce cache misses
• Support for multilevel mesh operations (coarsening/interpolation 

between different levels, ghost cell filling)
• Multigrid solvers for Poisson and Helmholtz equations 
• Sub-cycling time-stepping algorithm
• Support for particles and particle-mesh operations 



Acoustic Gaussian pulse
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Acoustic Gaussian pulse
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Exact
Present

• Exact solution can be obtained from the Green’s function method applied to the 3D wave 
equation for pressure 



Semi Lagrangian advection
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Semi Lagrangian advection
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Semi Lagrangian advection
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Simplex tessellation

69



Simplex tessellation
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Simplex tessellation
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Simplex tessellation
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Simplex tessellation
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Simplex tessellation
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Simplex tessellation
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Simplex tessellation



Simplex tessellation
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Simplex tessellation
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Simplex tessellation
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Interface Reconstruction Library (IRL)
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• https://gitlab.com/robertchiodi/interfacereconstructionlibrary
• Open-sourced under the MPL-2.0 license
• Interface reconstruction using PLIC 
• Normals using ELVIRA, LVIRA
• Provide neighborhood information of mesh and VOF and get the 

interface plane

• Simplex tessellation 
• Create flux polyhedron, linkage information and get volumes and 

centroids

• Multi-plane reconstruction for thin structures

https://gitlab.com/robertchiodi/interfacereconstructionlibrary


Zalesak’s disk
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64x64 64x64 – 2 level



3D Deformation
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32x32x32 – 1 level 32x32x32 – 2 level



Liquid jet in supersonic crossflow
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• Fuel atomization in scramjet engines (Funded by AFRL)
• Mach 1.94 crossflow of air with a 1 mm dia., 20 m/s water jet
• 3 levels of refinement – 18 points in the jet diameter



Liquid jet in supersonic crossflow
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• Fuel atomization in scramjet engines (Funded by AFRL)
• Mach 1.94 crossflow of air with a 1 mm dia., 20 m/s water jet
• 3 levels of refinement – 18 points in the jet diameter



Ficuciello et. al. (2017)

Fuel injector
Spray control with acoustic excitation

85Acoustic baffles

Standing wave



Spray control with acoustic excitation
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• Pmax = 12kPa, corresponds to a sound pressure level of 172 dB
• Non-linear acoustic excitation



Spray control with acoustic excitation
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• 3 levels of refinement with all cells with an interface tagged



Spray atomization control
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PAN IAN VAN

Experiments
(Ficuciello et al.)

Simulation



Spray control with acoustic excitation
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Experiment (Ficuciello et al.) Simulation



Performance on Stampede2 KNL nodes
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Performance on Stampede2 KNL nodes
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Strong scaling Weak scaling



Performance on Stampede2 KNL nodes
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50% reduction in
resource utilization

with AMR
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