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Dynamic stability analysis is performed for a typical future hypersonic transport vehicle during atmospheric flight.

Unsteady aerodynamic data in the form of indicial responses are generated by solving the Navier–Stokes equations.

Computations needed atmultipleMachnumbers andassociated angles of attack are computed in a single job byusing

dual-level parallel script. Validity of the indicial approach is established by comparing results with experiment and

the time-integration method. Flutter boundaries associated with pitch and heave rigid-body degrees of freedom are

computed. Effect of position of the mass center on flutter boundaries, which is more predominant in the transonic

regime, is shown. This work advances stability analysis procedures for next-generation hypersonic vehicles.

Nomenclature

�A� = aerodynamic matrix
ah = location of pitch axis from midlength in b
b = semilength of the body in feet
Cl, Cm = sectional lift and moment coefficients
d = h∕2b
fdg = displacement vector
g = artificial structural damping coefficient
h = plunging displacement
�K� = stiffness matrix
kc, kb = reduced frequency, ωc∕U and ωb∕U
M = Mach number
�M� = mass matrix
m = total mass, slugs
q = dynamic pressure, 0.5ρU2

ReL = Reynolds number based on body length
rα = radius of gyration
t = time, s
U = speed, ft∕s
xα = coefficient ofmass center location from elastic

axis in b
α = pitching angle, rad
λ = flutter eigenvalue
μ = air to mass density ratio, m∕πρb2
ρ = density of air, slugs∕ft3
ω, ωf, ωh, ωα = arbitrary, flutter, plunging and pitching

frequencies, rad∕s
∞ = freestream condition

I. Introduction

F UTURE hypersonic vehicles will include civil transports [1] that
will move passengers over long distances in a short period of

time. The successful Space Shuttle Orbiter (SSO) design† serves as
the basis for some of these next-generation concept vehicles. The
SSO was dynamically stable because it was rigid compared with

typical transport vehicles. However, to increase the payload capacity,
new concept vehicles [2] need larger length-to-width ratios than the
SSO configuration. As a result, dynamic stability becomes a more
important design consideration for future hypersonic vehicles
comparedwith SSO configurations. The rigid-bodymodes studied in
this paper correspond to the first plunging and pitching modes that
determine the primary stability characteristics during reentry [3].
Orbiter flight data were used to perform SSO reentry stability

analysis [4]. Because of a lack of advanced computational fluid
dynamics (CFD) at the time when SSO was designed, most of the
analyseswere dependent on linear theories, with corrections based on
wind-tunnel data [4]. Based on the pioneering efforts of sponsored by
the U.S. Air Force and NASA [5] in using CFD to compute the
stability boundaries of two-degree-of-freedom plunge–pitchmotions
of a typical wing section, several follow-up computations were
performed for hypersonic vehicles [6]. Unlike the detailed validation
presented in a comparison with linear theory and comparison
between time and frequency domain methods [7], most of the later
reports have shown ad hoc results [8].
In this paper, flutter boundary computations are made for a typical

next-generation hypersonic transport (NGHT) configuration proposed
earlier by NASA [9]. The OVERFLOW code [10] for Reynolds-
averaged Navier–Stokes (RANS) equations is used to compute the
aerodynamic parameters. Grids and time steps are selected based on
detailed sensitivity studies similar to that performed by the author in
[11,12]. Validation of steady data is made with earlier computations
[9]. In this paper, a stability analysis is performed using the unsteady
aerodynamic data in the form of indicial responses [13,14]. Ballhaus
and Goorjian [14] introduced an approach to generate unsteady
aerodynamic data using indicial responses by using a CFD code based
on the small perturbation theory. Use of CFD-based indicial responses
to compute flutter boundaries was first presented by the author [7].
Recently, the use of indicial responses has been extended to compute
unsteady aerodynamic data for a simple unmanned combat aircraft
[15], but did not include stability analysis.
In the present paper, the flutter boundary of a typical hypersonic

configuration is computed using indicial responses generated by
solving the RANS equations. The validity of unsteady aerodynamic
data is established by comparing present results using the indicial
method with data from experiment and the time-integration method.
Stability boundaries are computed using the frequency domain
approach, which ismore suitable for RANS equations comparedwith
the reduced-order modeling approach, which is mostly applied to
Euler equations [16].
Use of RANS simulations in aeroelasticity studies requires large

computer resources. This issue is addressed here by using the dual-
level parallel protocol called RUNDUA [17], which was recently
applied successfully for fast computation of unsteady data for a
descending parachute cluster system with a canopy [18].
This paper focuses on solution technology development. The next-

generation hypersonic configuration selected for demonstrating the
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technology does not have structural data. Therefore, structural
parameters needed for demonstration are selected from those
available in the public domain for similar configurations.

II. Approach

In the present work, the RANS equations [19] are solved
numerically using the diagonal form of the Beam–Warming central
difference algorithm [20], along with the one-equation Spalart–
Allmaras (S–A) turbulence model [21]. The solutions are computed
using theOVERFLOWcode [10], which uses an overset grid system.
The second-order spatial and temporal accuracy options available in
the 2.2k version of OVERFLOW are used throughout the present
analysis. Dynamic motions are modeled using standard “xml” input
files [22].

A. Aeroelastic Equations of Motion

Rigid-bodymodes play an important role in the stability of NGHT
[4]. The stability boundaries corresponding to plunge and pitch
modes are of primary importance [4] to develop flight control
strategies. In this effort, the structural dynamics of NGHT are first
represented by plunging and pitching modes, as shown in Fig. 1.
Stability boundaries are computed for freestream conditions starting
from M∞ � 5.5 and ending at M∞ � 0.50. Effects of variation in
locations of the elastic axis and mass center on stability boundaries
are studied.
Because the aeroelastic model is analogous to the two-degree-of-

freedom model developed in [7], the following set of equations is
used:

�μk2b�M� − �A��
�
δ
α

�
� λ�K�

�
δ
α

�
(1)

where kb � reduced frequency ωb∕U, ω is circular frequency in
radians per second, U is speed in feet per second, and b is the
semilength of the NGHT; δ � h∕2b and are displacements
corresponding to plunging and pitching motions, respectively. The
mass-to-air density ratio is defined as μ � m∕πρα2, where ρ is the air
density andm is the totalmass. Structural damping,which is assumed
to be small compared with aerodynamic damping, is not included in
Eq. (1). However, an artificial damping parameter is included for
finding the flutter boundary [23]:
Mass matrix:

�M� �
�
1 xα
xα γ2α

�

Aerodynamic matrix:

�A� � 1

π

�
0.5Clδ Clα

−Cmδ −2Cmα

�

Stiffness matrix:

�K� � 1

ω2
r

�
ω2
h 0

0 ω2
αγ

2
α

�

where ωh, ωα, and ωr are plunging, pitching, and reference

oscillatory frequencies. Radius of gyration rα is the absolute value of
the location of mass center xα [23].
The eigenvalue λ in Eq. (1) is defined as

λ � μ�1� ig�
�
bωr

U

�
2

where g is the artificial structural damping.
The classical U-g method [23] of finding the flutter boundary is

followed. Equation (1) is solved for eigenvalue λ in an iterative

process by varying kb. The aerodynamic matrix �A� for any kb is

computed using the indicial approach [7,13,14]. In the U-g method,

flutter point is defined when the artificial damping g changes from

positive to negative.

B. Indicial Method

To find the flutter boundary, the aerodynamic matrix �A� of Eq. (1)
needs to be computed for various frequencies for a given mode and

Mach number. This approach is computationally more efficient than

the time-integration method, which will need separate computations

for each frequency. Assuming that unsteadiness is caused by a small

linear perturbation about a nonlinear steady-state solution, an indicial

approach can be used. In the indicial method, only a single

computation is required for a given Mach number and mode. The

indicial response calculation is carried out by obtaining the flow

response to a step change in the given mode of motion. From this

response, the solution for all frequencies can be computed by

Duhamel’s integration [13]. Figure 2 shows a typical indicial lift

response to an arbitrary step change in angle of attack.

Fig. 1 Two-degree-of-freedom system model of NGHT.

Fig. 2 Typical indicial response.
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Assuming a sinusoidal motion about a mean angle α0 with an

amplitude of α1 yields

α�t� � α0 � α1e
iωt (2)

Following derivations in [7], real and imaginary parts of the force

coefficient can be written as

Re�Clα� � Clα�∞� − ω

Z
∞

0

F�t 0� sin�ωt 0� dt 0 (3)

Im�Clα� � −ω
Z

∞

0

F�t 0� cos�ωt 0� dt 0 (4)

Similar equations apply for the moment coefficient.

C. Parallel Computing

This effort involves amassive number of cases to compute the large

number of conditions to model the descent of NGHT. In [17], a

parallel protocol called RUNDUAwas developed, which creates an

efficient single-job computing environment for multiple cases. If

enoughprocessors are used, the resultingwall-clock time for a typical

multiple-case calculation series is nearly the same as a single case.
The present approach is aimed toward generating a complete

aerodynamic database for stability analysis during descent. The

following approach is applied using the OVERFLOW code:
1) A set of “Configuration.xml” files that input pitch and plunge

motions into OVERFLOWare created.
2) Inputs with parameters representing the descent motion (Mach

number, angle of attack, Reynolds number) are generated. It is
assumed that the number of iterations specified is adequate for
convergence for all cases.
3) Data are spawned to different directories, which are

contiguously numbered.

4) All cases are computed, running each case on a different group
of cores using “Rank” identification [17].
5) Successful completion of all jobs can be tracked by monitoring

the size of the residual files. Once a portable batch system job is
successfully completed, all residual files will be the same size. It is
assumed that the user has selected appropriate parameters so that
results converge at the end of the job completion.
6) After all jobs are successfully completed, force and moment

coefficients are extracted from the computed solutions.
Figure 3 shows a flow diagram of RUNDUA.

III. Results

A. Geometry and Grid

The overset surface mesh on the geometry of a NGHT
configuration selected from [9] is shown in Fig. 4. Force
contributions from the lifting surfaces play a stronger role than other
components in stability studies. Given that grid requirements for
accurate pressure computations are more stringent for high subsonic
Mach numbers than super/hypersonicMach numbers, grid sensitivity
studies are performed for thewing atM∞ � 0.90. A body-fitted near-
body (NB) grid with O-H grid topology [12] (wrap around wing
section in the x direction and stacked spanwise in the y direction),
together with a cap grid for the wing tip, is used to model the vehicle.
We start with a fine grid with 816 chordwise points and 25 spanwise
stations generated using the OVERGRID grid tool [24]. Based on
earlier grid sensitivity studies [12], a normal spacing of 0.000025c (c
is the root chord length of thewing)with a surface-stretching factor of
1.125 is used. This yields a y� value (one grid point away from the
surface) that varies between 0.959 and 1.14, which is adequate to
resolve boundary-layer flows at the surface. The y� value is a
nondimensional distance used to describe the fineness of amesh for a
particular flow pattern. It is important in turbulence modeling to
determine the proper size of the grid cells near domain walls. The
turbulence model wall laws have restrictions on the y� value at the
wall. The standard S–A model [21] requires a wall y� value about
one. A faster flow near thewall will produce higher values of y�, and
so the grid size near the wall must be reduced.
Figure 5 shows the effect of the size of the x grid on the lift

coefficient (Coef). Starting from the selected fine grid of size 816
points, coarser grids are generated by removing alternate grid points
starting from the second point. In Fig. 5, it is observed that about 409

Fig. 3 Flow diagram of RUNDUA [17].

Fig. 4 Surface grids.

Fig. 5 Effect of chordwise grid points.
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points are adequate. Based on the plot of lift coefficient vs the number

span stations in Fig. 6, about 30 spanwise stations are adequate.
The rest of the NB grids are selected from those used in [9]. Next,

the off-body (OB) grids are determined based on the grid refinement

studies. Adequacy of the OB grid depends on the spacing of level 1

(closet toNBgrids) grids. Figure 7 shows that a level 1 grid spacing of
0.25%of the length of the vehicle is adequate. Figure 8 shows that the

outer boundary location of OB grid at about four lengths of the

vehicle is adequate. Based on these grid sensitivity studies, a total of
20 million points for near-body grids and 25 million points for off-

body grids are required.

B. Steady-State Computations

Computations are made for 100 cases with decreasing Mach

number from 5.5 to 0.5 in decrements of 0.05 and corresponding

angle of attack α decreasing from 12 to 2 deg in decrements of 0.1.

The Reynolds number based on length increases from 10 to 100

million. It is assumed that this event takes place in the last 30 s of

flight before touchdown.Based on the residual convergence shown in

Fig. 9 and lift convergence in Fig. 10 for M∞ � 0.90, 40,000
iterations were adequate for steady-state computations.

Figure 11 shows the comparison ofCpwith earlier results from the

Langley Research Center (LaRC) using the original grid (106

chordwise points) [9]. The present fine (409) and finer (816) grids

show almost the same Cp distribution. Compared with the original

grid, both fine and finer grids show changes in the upper surface Cp
up to about 25% chord and near the shock wave. This comparison

supports numerical verification requirements of further results

presented in the paper. Figure 12 shows the plots of Mach number,

Fig. 6 Effect of spanwise grid points.

Fig. 7 Sensitivity of OB grid spacing.

Fig. 8 Sensitivity of outer boundary location.

Fig. 9 Residual convergence.

Fig. 10 Lift convergence.

Fig. 11 Cp at M∞ � 0.5, α � 0.0 deg.
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angle of attack (AOA), and lift/drag L∕Dwith respect to time before
touchdown, along with results for the SSO. The Reynolds number
based on body length ReL is assumed to linearly increase from 10 to
100 million. L∕D rapidly increases as the speed climbs to around
transonic Mach numbers. Computed results for the geometry are
qualitatively comparable to those reported for the SSO [3]. Figure 13
shows surface Cp and Mach contours downstream during descent.
Figure 14 shows the static stability derivative, the rate of lift with
angle of attack as a function of time to touchdown.

IV. Dynamic Stability Analysis

A. Validation

To compute stability boundaries, unsteady data are generated
using the indicial method [7]. The validity of generating indicial data
using OVERFLOW is verified by comparing the results with

experimental data for an oscillating NACA 64010 airfoil [25]. The
airfoil was modeled using a single grid with 201 chordwise and 75

normal directional grid points, which was found adequate for
accuracy based on sensitivity studies. The indicial response was
computed atM∞ � 0.8 using a step angle of attack of 1.0 deg, which
is in the linear perturbation range of the nonlinear steady-state
solution with a moderate shock wave. As shown in Fig. 15, the
computation required 6000 time steps (or nondimensional time 40)
for the response to reach a constant value. Figure 16 shows good

comparison of in-phase and out-of-phase values ofClα for increasing
reduced frequencies kc � ωc∕U, where c is the chord length. As
expected, the OVERFLOW code, which is based on the previously
demonstrated Beam–Warming algorithm for indicial response
computations [26], is valid for further indicial responses in this paper.

B. Demonstration for Next-Generation Hypersonic Transport

The final grid of 20 million near-body grids points, decided based
on grid sensitivity studies, is used for the rest of the unsteady
computations. The time step is established based on the temporal
studies.
It is found that 3600 steps per cycle (NSPC) with 15 Newton

subiterations (NWIT) are adequate for accurate unsteady responses
for kb � 1.13 (corresponding to assumed values of M∞ � 3.0,
oscillating frequency 4 Hz, and b � 130 ft [2]). The corresponding
nondimensional time step size is 0.00232.
Table 1 shows a comparison between stability derivatives of

pitchingmotion obtained by indicial and time-integration approaches
at representativeM∞ � 0.90 for a typical section of the wing’s 50%
semispan. Time-integration required three cycles with NSPC �
3600 for each frequency, whereas 3000 steps were required for the

indicial response with a 0.5 deg step to converge. Wall-clock time
needed for indicial computation is one-eighteenth of the time
required by the time-integration approach. The flutter speed

Fig. 12 L∕D before touchdown.

Fig. 13 Cp and Mach contours atM∞ � 0.90.

Fig. 14 Rate of change in lift with respect to α.

Fig. 15 Indicial responses of sectional lift and moments for the NACA
64A10 airfoil at M∞ � 0.80.

Fig. 16 Validation of indicial results with the experiment (Expt) for the
NACA 64A10 airfoil at M∞ � 0.80.
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computed by usingEq. (1) differed by only about 5%between the two

approaches. The rest of the computations will be performed for the

full configuration using the indicial method.

Flutter boundary computations for the full configuration are made

for 100 cases in the last 30 s of descent, during which Mach number

decreases from 5.5 to 0.5 in decrements of 0.05, and the

corresponding angle of attack α decreases from 12 to 2 deg in

decrements of 0.1. The Reynolds number based on length increases

from 10 million to 100 million. From numerical experiments, it is

found that 6000 steps withNWIT � 15 are adequate for all cases for
indicial responses to convergewith 0.5 deg step pitching at two-thirds

length (as suggested in [27]). All cases were completed in 17.5 wall-

clock hours using 4000 cores with 40 cores per case.

Figures 17 and 18 show carpet plots of indicial time responses in

time for Clα and Cmα, respectively. We find that dynamic responses

are more sensitive near transonic Mach numbers compared with the

response at higher Mach numbers.

Flutter boundary computations were made by solving Eq. (1).

Based on the gross weight 4080 lbf and length of 62.5 ft given in [27]

(Table 1 and Fig. 3) the value of μ � 184 at 60,000 ft altitude. The

typical values of elastic axis location ah � 0.33b andωh∕ωα � 0.25
[6] are assumed. Computations are made for the mass center in front

of the elastic axis at xα � −0.05, −0.1, and −0.15; γα is absolute

value xα. Figures 19 and 20 show flutter speed and corresponding

frequency with respect to time before landing. Flutter speed, which

gradually decreases in time, takes a dip around transonic Mach

numbers, a phenomenon similar to that observed for advanced

transport aircraft [28,29]. Also, a variation in xα has effects mostly

near the transonic regime, showing that the vehicle is less stablewhen

the mass center is closer to the pitching axis. Flutter frequency is

almost constant until the transonic regime.

Following the discussions for two-dimensional airfoils in [7,29],

the dip in Fig. 19 can be explained as follows. For xα � −0.1, Figs. 21
and 22 show a plot of a real part ofClα and the corresponding location

of the center of pressure xcp measured frommidbody in semilength b,
respectively. As the Mach number decreases, Clα decreases until the

transonic regime and then starts rising rapidly. An increase in Clα

corresponds to a reduction in flutter speed [30], as seen in Fig. 19.

During the transonic regime, xcp moves toward the mass center and

starts stabilizing the system. As a result, the flutter speed starts

increasing after the transonic regime. After reaching the dip, flutter

speed starts increasing corresponding to drop in Clα.

Table 1 Clα for section of the wing at 50% semispan

Parameter Value

Reduced frequency kc 0.1 0.2 0.3 00.4 0.5
Indicial: in phase 8.4408 88.001 7.557 6.891 6.127
Time integration: in phase 8.051 7.712 7.237 6.567 5.978
Indicial: out of phase −1.338 −1.701 −2.025 −2.401 −3.001
Time integration: out
of phase

−1.233 −1.654 −1.934 −2.350 −2.905

Fig. 17 Indicial responses of Clα for a full configuration.

Fig. 18 Indicial responses of the Cmα configuration.

Fig. 19 Flutter boundary during descent of NGHT for xα � 0.05,−0.1,
and −0.15.

Fig. 20 Flutter frequencies during descent of NGHT xα � 0.05, −0.1,
and −0.15.
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V. Conclusions

An advanced technology is developed, validated, and
demonstrated for cost-effectively computing the onset of instability
for future hypersonic transport. A computational procedure based on
the Navier–Stokes equations is presented to compute the possible
onset of instability associated with small perturbations for future
hypersonic transport during reentry. Static stability derivatives
compare qualitatively well with a similar configuration. The indicial
approach is found to be a cost-effective approach to predict the onset
of dynamic instability associatedwith flutter. For small perturbations,
results from the indicial response approach compare well with
unsteady experiments of an oscillating airfoil and computed results
using the time-integrationmethod. Computations on a typical section
show that the indicial method requires one-eighteenth the wall-clock
time of the time-integration method. Dual-level parallel protocols
facilitated the generation of large unsteady aerodynamic data for a
complete descent in practical time. With the use of 4000 cores, static
stability derivatives for 100 cases with varying Mach numbers and
angles of attack are computed in 2.5 h of wall-clock time, just 7%
more than thewall-clock time required to run a single case in a single
job using other procedures. Dynamic indicial responses for all 100
cases needed 17.5 h of wall-clock time. The present study shows that
the critical period during descent is in the transonic regime. For the
assumed parameters of a typical transport configuration, the flutter
boundary shows a dip around the transonic regime. In addition, the
location of the mass center with respect to the pitching axis is more
sensitive near the transonic Mach number regime than at other Mach
numbers. This work, based on the state-of-the-art high-fidelity
analysis procedure, will benefit the design of future hypersonic
transport vehicles.
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