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A parachute with payload is modeled as a three-degree-of-freedom system suitable for time-accurate coupling with
the Navier—Stokes flow equations. The coupled equations of motion are formulated following an instantaneous
Lagrangian—Eulerian approach, and solved using Newmark’s time-integration method. Flow solutions are computed
by solving the Reynolds-averaged Navier—Stokes equations with structured overset grids. A sensitivity analysis is used
to check the adequacy of grid and time-step requirements. The time-accurate coupling procedure is validated by
comparing the results with a frequency-domain approach. The results are demonstrated for a real parachute system,
including a comparison with the results based on the linear theory. Possible instabilities, such as divergence of
inclination angle and flutter associated with fluctuating drag force, are predicted. The present work advances the
fidelity of analysis procedures beyond those in current use based on loose coupling with the Navier—Stokes equations.

Nomenclature
Cp,C, = dragand side-force coefficients
D = diameter of the base of a canopy, m
E = modulus of elasticity of a canopy fabric, Pa
g = acceleration due to gravity, m/s
kq = reduced frequency, oD /U
L = distance between the mass centers of a canopy and
store, m
M = Mach number
m, = aerodynamic mass around a canopy, kg
m., mg = canopy and store mass, kg
q = dynamic pressure, 0.5pU?, kg/m?>
Rep = Reynolds number based on D
t = time,s
U = speed, m/s
0 = inclination or coning angle, deg
v = Poisson’s ratio
p = density of air, kg/m?
0] = oscillatory frequencies, rad/s
oo = freestream condition

I. Introduction

HE use of parachutes is an integral component of descent
systems. The new NASA spacecraft that will carry a crew
exploration vehicle (CEV), known as Orion, will accommodate up to
six astronauts and will use parachutes during its descent stage. A
critical component of the Orion design is the parachute deceleration
system, which is required to ensure safe landing of the capsule [1].
For a safe landing on Mars, supersonic parachutes are used [2].
Parachutes, of course, have been successfully used in aerospace
programs since the Apollo missions. However, as stated in [3], a
major difficulty in the design and development of these deceleration
systems is the lack of adequate analytical methods to properly predict
dynamic behavior, including loads and stresses on parachute
systems. These systems involve moving components in flows
dominated by vortices and their complex interactions, and a strong
nonlinear coupling that occurs between the flowfield and structural
elements associated with large movements [3].

Received 16 December 2016; revision received 8 May 2017; accepted for
publication 11 May 2017; published online 18 July 2017. This material is
declared a work of the U.S. Government and is not subject to copyright
protection in the United States. All requests for copying and permission to
reprint should be submitted to CCC at www.copyright.com; employ the ISSN
0022-4650 (print) or 1533-6794 (online) to initiate your request. See also
AIAA Rights and Permissions www.aiaa.org/randp.

*Aerospace Engineer, Computational Physics Branch. Associate Fellow
ATJAA.

1278

The stability of the parachute system is critical for the safe and
accurate landing of payloads, particularly when the crew is involved.
Complex flows coupled with multibody motions, including flexible
(canopy) and rigid (capsule), are a few of the elements involved in
determining the system’s stability. Figure 1 shows an unstable
parachute system after a successful deployment. Significant coupling
between the flow and canopy fabric occurred after full deployment,
which might have led to a system failure.?

The accurate modeling of flows around a parachute system
requires a solution of the unsteady Navier—Stokes equations through
the use of computational fluid dynamics (CFD), which can efficiently
model moving grids, including bodies with motion relative to each
other. The use of such a tool is critical, because the CEV capsule will
have more payload than the Apollo capsule, and may be required to
land on the ground [1].

Since the Apollo program, computational methods for both fluids
and structures have advanced significantly. However, the design of
the parachute system for the Orion capsule still uses the linear
aerodynamic theory available in NASTRAN, a finite element
analysis program developed in the late 1960s. The multibody
dynamics is modeled using the ADAMS module [4].

Applications of higher-fidelity models for parachutes have been
recently applied. The work in [5] presents computations on a flexible
isolated canopy with a capsule using the Euler equations, and included
the validation of pressures with the experiment. Takizawa et al. [6]
present a finite element approach to solve incompressible flows over
flexible canopy clusters, but did not include a capsule or any validation.
Recently, Reynolds-averaged Navier—Stokes (RANS)-equation-based
computations have been presented for a cluster of rigid canopies with a
capsule [7] using the overset-grid-based RANS solver, OVERFLOW
[8], and included validations with the experiment. To date, the fluids/
structures-interface efforts for parachutes using CFD codes are based
on quasi-steady (also known as loose) coupling [9].

A survey of related literature within the scope of this work reveals
that the aeroelastic data needed to validate CFD for parachute
systems are seldom available in the public domain. Most of the data
available are in the form of global stability derivatives for a complete
system, without details, such as surface pressures. The majority of
previously published data using CFD have relied on the argument of
its own self-consistent calculations and models [6]. In this paper, the
compressible/incompressible CFD code OVERFLOW, which is well
validated with third-party data for steady and unsteady flows over
complex configurations, is selected for parachute-system analysis.
OVERFLOW has also been validated for flexible configurations [10],
and has a robust ability to model moving components [11].
Additional validation is established by comparing the results between
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b)
Fig.1 Unstable parachute after successful deployment: a) deployment
and b) unstable.

time-response and frequency-domain approaches along with a
comparison with the linear theory.

II. Three-Degree-of-Freedom System

Pendulum motion in two dimensions is a primary mode of
oscillation for a parachute with a payload [12]. Figure 2 shows a
parachute with a capsule as a payload. It is assumed that the
pendulum motion occurs in the x—z plane about the y axis. The
masses in consideration in this simulation are payload mass m,,
canopy mass m,, and the aerodynamic added mass within a canopy
m,. The basic model of a two-dimensional system can be represented
as a three-degree-of-freedom (3-DOF) system about the center of
total mass involving rotation 6, and translations along the x axis and z
axis. The following assumptions are made:

1) The mass m, depends only on the canopy.

2) The centers of m, and m, are coincident.

3) The masses m, and m,, are at a fixed distance apart of L.

4) The centers of forces on a canopy and its mass are coincident.

5) The aerodynamic force on a payload is small compared to that

on a canopy.
The equations of motion governing the system are written as
a0 F
L & ___lo- AT, )
dr L(1 + m.mz") L(m, + m,)
d?x .
msﬁ—m,g—l—FAcosQ—FNsmG:O 2)
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Fig.2 Three-degree-of-freedom parachute model.

in which the total structural mass is m; = (m. + m,), the total
system mass is m, = (m, + m, + m,), g is the acceleration due to
gravity, and L is the distance between the mass centers of the canopy
and payload.

In this effort, the flexibility of the canopy is represented by
breathing modes (shrinking and expanding along the x axis that result
in changes along the circumference) and squeezing modes (shrinking
and expanding in the z—x plane that result in changes only in
circumferential direction). Oscillations in breathing and squeezing
modes are predominant during descent and pendulum-type motions,
respectively.

The flexibility of the canopy is modeled based on the simplified
equations given in table 29 of [13] for thin shells subjected to external
pressure. The rate of change in the diameter AD of the canopy base is
given by

AD  gc,D(1—v)
D~ AEt @
in which v is Poisson’s ratio, E is the modulus of elasticity, and # is
the thickness of the canopy material. The dynamic pressure is
represented by g, whereas ¢, is the drag coefficient. The diameters along
the axis are changed with the same proportion as the change in the
diameter of the base. The change in the height of the canopy is computed
assuming that the total volume of the canopy remains constant.

Equation (1) is solved using Newmark’s time-integration method
in association with the instantaneous Lagrangian—Eulerian approach
(known as arbitrary Lagrangian—Eulerian) [14], with the
aerodynamic data F4 and Fy computed by solving RANS equations
[15]. For this work, the RANS equations are numerically solved
using the diagonal form of the Beam—Warming central-difference
algorithm [16], along with the one-equation Spalart—Allmaras
turbulence model [17].
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Using the computed coning angle from Eq. (1), Egs. (2) and (3) are
solved to compute the trajectory motions in the x and z directions.

III. Validation of Time Integration

Grids for the canopy and capsule are taken from the previous paper
by the author [7]. The hemispherical canopy shown in Fig. 2 has a
spill hole of 5% diameter. As shown in Fig. 3, the canopy is modeled
with a body-fitted near-body grid with a C-O topology (C along the
radial direction and O in the circumferential direction). The number
of grid points along the radial direction for the canopy is 349, and the
numbers of points in the circumferential and normal directions are 61
and 74, respectively. The grid has a normal spacing of 0.000025D
with a surface stretching factor of 1.125, which yields a y+ value
(one grid point away from the surface) that varies between 0.959 and
1.14, and is considered adequate to resolve flows at the surface. The
spill hole is modeled using a cylindrical grid with 11 radial points,
147 axial points, and 61 circumferential points. The direction of the
flow is assumed to be in the positive direction of the x axis.

The spherical grid for the capsule is modeled based on the Apollo
command module as in [8], and has 115 circumferential, 61 radial,
and 60 normal grid points. The cluster is embedded in the Cartesian
outer grid with the size of 201 x 138 x 138, resulting in a total grid
size of about 6 million points. The outer boundaries are located at 15
diameters from the vertex of the stationary canopy.

Computations for validation are performed for a freestream Mach
number M , = 0.3. The Reynolds number based on the canopy diameter
Rep is 2 x 10°. Figure 4 shows the steady-state field Mach number and
surface-pressure distributions when the canopy is stationary.

First, computations are made for pendulum-type oscillations. To
verify the time-integration results, responses are obtained by forcing
the system to oscillate in sinusoidal motion without allowing the
canopy to deform. Equation (1) is written in a simpler form by
introducing the damping parameter A;:

d?e .
¥+A10+A29 =A3CZ COS(G) (5)

Figure 5 shows that the side force ¢, response leads the motion by
8 deg under forced sinusoidal motion. Based on this phase angle,
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Fig.3 Grid topology.
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Fig. 4 Field Mach-number contours and canopy surface pressures at
M = 0.30.
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Fig.5 Force response due to forced sinusoidal motion.

coefficients A; and A, are found by setting A; = 1.0 for a neutral
response, and equating in-phase and out-of-phase quantities of
Eq. (5). Time integration using A and A, results in an almost neutral
response, as shown in Fig. 6. Reduction of structural damping A; by
10% results, as one expects, in a diverging response shown in Fig. 6.
Also, as expected, an increase of A; by 10% resulted in a converging
response (not shown in Fig. 6). The neutral response obtained using
the coefficients from the forced-response analysis shown in Fig. 5 and
the diverging/converging responses obtained with variations of A,
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Fig. 6 Neutral and diverging responses in pendulum motion.
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Fig.7 Effect of flexibility of aeroelastic response.

verify the implementation of the time-integration method using
RANS equations.

Figure 7 shows the effect of flexibility on aeroelastic response
using Eq. (4). The rigid model yields a more conservative response
than the flexible model.

IV. Demonstration for a Typical Canopy—Capsule
System

The typical canopy—payload system similar to that described in
[12] is selected for demonstration of results for a realistic
configuration. The values of the physical parameters of the
configuration are as follows: base diameter of the canopy D = 4.4 m,
length between the mass centers of the canopy and store L = 8.4 m,
mass of the canopy m, = 7 kg, mass of the payload m, = 91 kg,
aerodynamic mass m, = 124 kg based on Henrich formula [12],
modulus of elasticity of the canopy fabric E = 90 MPa, and
Poisson’s ratio v = 0.20.

Two flight conditions with initial Mach numbers 0.43 and 2.0
listed in [18] are considered for demonstration. The nondimensional
time-step size (AtU/D) and number of Newton iterations are
determined by numerical experiments. It is found that 10 Newton
iterations are adequate for a stable solution. Based on the
convergence history shown in Fig. 8, the time step needed for
accuracy that corresponds to the system oscillating at 1 Hz with 480
steps per cycle is 0.0131.

The first computations are made for the subsonic case deployment
starting at M = 0.43. As given in [18], the dynamic pressure
q = 73.5 Pa and the deployment velocity is 103.6 m/s. To begin,
steady computations are made for a rigid case with a mean inclination
angleof @ = 0.0 deg until the residual dropped about three orders of
magnitude. Then, aeroelastic computations are started to integrate
equations of motion (1). The following numerical-integration
procedure is used.

Starting from the converged steady-state solution, loads are
computed for the first time step. Using these loads, Eq. (1) is integrated
in a module outside the CFD code using Newmark’s time-integration
method, as described in [14]. Integration is started with an initial
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Fig. 8 Convergence of 0 with respect to decreasing time-step size.

nondimensional velocity of 0.01. Using the new 8 computed, the Mach
number and position of the system for the next step are computed,
solving Egs. (2) and (3). The modal deformations are computed using
Eq. (4). Updated values are used to determine the next position
accounting for time metrics. This process is repeated until all required
responses are obtained.

Figure 9 shows the comparison of inclination angles between the
present computations and the simplified linear theory [12] for the first
cycle. The period of the first cycle of & from Fig. 9is 5.2 s compared to
5.62 s based on the linear theory [12]. The peak amplitudes of the
present results are smaller than that given by the linear theory. The
linear theory without viscous and nonlinear terms may be
overpredicting responses. The close comparison further validates the
present time-integration approach with the Navier-Stokes equations.

Figure 10 shows the plots of inclination angle and drag responses
along with descent Mach number. The Mach number decreases
almost linearly, whereas the drag force decreases monotonically. The
inclination angle shows oscillatory response with small amplitude
due to initial disturbance.

The next computations are made at the supersonic Mach number
2.0. Based on [18], the dynamic pressure g and speed U are 753 Pa
and 451 m/s, respectively. Computations without structural
damping are started from a converged steady-state solution with an
initial 8 of 0.01 using a nondimensional time step of 0.0131 based on
the results shown in Fig. 8. Figure 11 shows the response results for
the first 2.5 s during which the Mach number decreases from 2.0 to
1.6. The inclination angle shows a diverging trend, and drag
responses are oscillatory with slightly decreasing amplitude. The
magnitude of amplitude decreases from 7 to 3%.

Computations are repeated with Raleigh-type structural damping
of a value equal to 90% of the stiffness coefficient of # in Eq. (1), and
the results are plotted in Fig. 12. The addition of structural damping
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Fig.9 Comparison between the linear theory and present computations.
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Fig. 10 Responses for case with deployment M, = 0.43.
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Fig. 13 Snapshots from when the canopy is at a) start and b) at about
1.5s.

makes the response of the inclination angle more stable, but does not
have observable effects on drag coefficient. However, the amplitude
of the drag coefficient reduces in time as in the undamped case.
Figure 13 shows the snapshots of field Mach number and surface
cp, at the start the position and the peak bulged position around
t = 1.56 s. Mach numbers below the canopy for the peak position

have a larger subsonic region below the canopy surface than at the
start position. Flow around the hole has a lesser supersonic region for
t = 1.56 s. The bulging and shrinking of the canopy are due to
fluctuations of c,, as shown in Fig. 11.

V. Conclusions

To date, stability analyses for parachute systems are often performed
by others using linear aerodynamic theories. The use of advanced flow
models, such as those based on the Navier—Stokes equations, is limited
to quasi-steady coupling. In this study, a Reynolds-averaged Navier—
Stokes (RANS)-equation-based high-fidelity procedure valid for both
compressible and incompressible flows is time accurately coupled
with a 3-three-degree-of-freedom parachute—payload system. The
flexibility of the canopy is represented in the modal form. The coupling
procedure accommodates for trajectory motions, and the time-accurate
coupling procedure is validated with a frequency-domain approach.
Demonstration results are shown for stable and unstable responses,
including the effect of flexibility.

The results are computed for a system with realistic physical
parameters. The frequency and amplitude of responses vary from
those based on the linear theory, but show the same trends.
Computations for both subsonic and supersonic ranges show that the
system is unstable without structural damping. Stabilizing the system
by adding structural damping is demonstrated. The onset of possible
flutter at supersonic regime is predicted by the present time-
integration method. Such predictions are not possible by loose
coupling used elsewhere. The present work provides a high-fidelity-
based analysis procedure for designing parachutes.

Further developments are needed in this area by extending the time
integration with the use of three-dimensional trajectory equations. The
use of the finite element modeling of structures in place of modes can
facilitate the direct computation of stresses during the trajectory analysis.
For including more flow details, the RANS equations need to be
replaced with the direct Navier—Stokes equations, taking advantage of
rapidly growing computer resources. The present effort is accomplished
by extensively modifying the existing popular computational fluid
dynamics (CFD) code that was primarily designed for rigid
configurations. A more general-purpose, modular, and robust fluid/
structure-interaction capability is needed for CFD codes to
accommodate full trajectory equations.
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