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The Basic Challenge:

It is evident that active region magnetic fields (and solar magnetic fields in
general) span the entirety of the convection-zone-to-corona system, and do not
exist in isolation in a localized region, or interact only over a prescribed spatial
scale. The challenge of modeling the system in its entirety is that the magnetic
field spans regions whose physical conditions vary dramatically:

(1) The convection zone is a high-B, optically-thick, high density plasma with
energy transport dominated by convective motions, while the solar corona is a
low-[3, optically-thin, sparse, hot, magnetically-dominated plasma.

(2) The two regimes are physically connected through an interface region
spanning the photosphere, chromosphere, and transition region. In these layers,
the plasma transitions from optically-thick to optically-thin, from high to low-B in
a highly-stratified environment that spans (on average) 4 orders of magnitude in
temperature, and 12 to 13 orders of magnitude in density.

Numerical codes tend to be designed to treat different regions of the combined
system separately, yet recent observations and numerical models show that the
corona and surface layers are deeply interconnected through the atmospheric
“interface region.”



Physical regimes

—_— _— —_— —_— <

Visible surface

Corona: hot, low-B, optically thin, shocks, field-aligned electron

thermal conduction, non-thermal physics, short timescales

Transition region: optically thin, magnetically-dominated, steep
temperature gradients, shocks, restrictive energy scale height
(conduction)

Chromosphere: optically thin to continuum radiation, optically
thick to energetically important atomic transitions, non-LTE
radiative transport, a mixture of low and high-B plasma,
convectively stable, shocks

Surface layers: B = 1 (strong fields), transition from convective to
radiative energy transport, overshoot layer, highly stratified,
pressure scale height ~100 km

Upper convection zone: 3 > 1, optically thick, convectively
unstable, compressible MHD required

Deep convection zone: high-B, convectively unstable, optically-
thick, long timescales, v/c,<< 1, v, < c,
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The Basic Challenge:

As magnetic fields emerge into the solar atmosphere, their observed properties
span a wide range of spatial and temporal scales. For example, active region
fields observed in the corona are rarely in isolation --- they are often connected
to other ARs some distance away on the solar disk, and always emerge into a
global magnetic field whose structural complexity is a function of the solar cycle.

Yet even small-scale events (such as the emergence of flux at granular or
supergranular scales) can trigger rapid changes in the large-scale coronal field
that are sufficient to trigger eruptive events. Time scales of the coupled system
range from seconds during flares, to months as AR magnetic flux emerges,
evolves, and decays.

As a modeling community, we have made great progress in better describing the
energy sources and sinks in the CZ-to-corona system; for example, the physics of
radiation transport at small scales in the complex interface region, or the effects
of local cross-field diffusion in chromospheric plasmas. Yet very little effort has
been directed at addressing the fundamental problem of cross-scale coupling, and
improving solar models by updating their underlying discretization formalism.




CGEM Dynamic Models: RADMHD

To expand the scope of convection zone-to-corona models, and address the challenge of dynamically
and energetically coupling large-scale active region and global magnetic fields with the small scale
structure associated with realistic turbulent convection at and below the visible surface, we have
updated and improved the underlying numerical formalism of RADMHD.
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The new implementation of RADMHD is an efficiently-parallelized, semi-implicit radiative-MHD
solver that advances the conservative portion of the MHD system of equations by means of a high-
order, non-directionally-split 3D semi-discrete explicit scheme, while incorporating certain energy
sources into the system via an implicit Jacobian-Free Newton Krylov solver.




RADMHD energetics:

RADMHD treats resistive dissipation, viscous stresses, and most other energy
sources in the implicit sub-step, using an efficient “Jacobian-free” Newton-Krylov
solver. Energy sources in the RADMHD model corona include field-aligned electron
thermal conduction, and radiative losses in the optically-thin limit.

The code now calculates optically-thick radiative cooling by approximating the
solution to the gray (frequency-independent) radiative transfer equation in local
thermodynamic equilibrium (LTE) assuming a local, plane-parallel geometry. This
approximation of optically-thick surface cooling provides significant, and necessary
computational savings for large-scale simulations, but is less realistic than those
models that solve the frequency-dependent transfer equation in detail.

However, our goal is to evolve the system with sufficient realism over the spatial
scales necessary to investigate the interaction of small-scale surface convection
with large-scale magnetic structures present in the global corona, and couple
dynamics at different scales within the highly-stratified thermodynamic transition
between the convective interior and atmosphere

We now focus on improvements to RADMHD’s underlying discretization scheme
that allow us to pursue this objective.



Global RADMHD: Developments and improvements

Spherical geometry and a block non-uniform mesh. RADMHD can now evolve the system of
MHD conservation equations on a spherical polar coordinate, block non-uniform mesh, either
globally or over an AR-scale spherical wedge.

Fully-3D interpolation and direct stabilization. RADMHD code is no longer directionally split; its
semi-discrete, finite-volume formalism now calculates fluxes using a high-order, 3D, 27-point
piecewise continuous interpolating polynomial. This allows flows and shocks to be propagated
more accurately in off-axis directions. The CWENO scheme has been replaced by a new, much
more robust method of shock stabilization that uses a normalized, direct measure of flux
discontinuities along control volume faces.

High-order treatment of vector fields. Many directionally-split finite volume schemes

treat vector components like scalar fields. In curvilinear coordinate systems, this treats
mutable unit vectors as constants resulting in 15t-order accuracy. Therefore, unless the cell
volumes are small in extent (i.e., Cartesian-like), accuracy is poor. To overcome this challenge,
we decompose vector fields into their Cartesian components so that unit vectors can be
integrated, but still perform the integrations in spherical geometry.




Global RADMHD: Developments and improvements

Tensor fluxes for vector fields. A high-order Gaussian integration is now used when integrating
fluxes over a control volume to update cell averages. The order of accuracy of the discretization
scheme is maintained by using a tensor formalism to integrate the vector conservation
equations (momentum, and magnetic fields) over a curvilinear mesh element. The advantage of
a tensor flux scheme is that there are no geometric source terms that arise from integrating a
vector field component-by-component. Such source terms can introduce errors because they are
not calculated in the same way numerical fluxes are calculated.

Constrained transport. To eliminate any divergence error in the magnetic field, we extended
the method of Kissmann & Pomoell (2012) to 3D curvilinear geometries and incorporated it into
RADMHD. This constrained transport scheme is formulated to ensure that electric fields at face
edges are consistent between cell volumes that share an edge. Given an initially divergence-free
magnetic field, this scheme maintains the solenoidal constraint to within numerical round-off
error while also conserving magnetic flux and accurately propagating discontinuities in the
magnetic field.

Scaling: The MHD state vector can now be easily be scaled to accommodate local or global
problems. The scaled variables are defined as a variable in cgs units divided by either a
dimensioned scaling factor or dimensionless reference value. This simple feature is important
for global calculations.




Vector momentum conservation — finite volume tensor formulation:

1

op
f—clV+—
vV Ot AV

1

1
fV-TclV:—fSclV
1% AV Jv

AV

1 op 1 1

— | —dV=—""-Pn-TdA+ — | SdV

AV Jv Ot AV Ja AV Jv
where

1 1 1
T=—pQp- —B®B+(P+ —B-B)I
Je 4 8

AV:de
v

P =pAr, 0, &) F + py(r, 0, )0 + py(r, 6, ¢) §
= pulr, 0, )R + py(r, 0, &) F + pu(r, 6, )2

B =B,(r, 0, §)F + By(r, 0, $) 6 + By(r, 0, ¢)

=B.(r, 0, 9)X + By(r, 0, $)§ + B.(r, 0, $) %



Vector momentum conservation — finite volume tensor formulation:
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For example, at the lower r-face of a control volume,
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Since the outward normal vectors over faces of the control volume are not
constant, we evaluate the integrals in the following way:
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And finally,
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The updated components of the state vector (volume average quantities) are
then projected back onto the spherical polar coordinate axes.

Advantage:

Using a tensor formalism to integrate the vector conservation equations over a
curvilinear mesh element preserves the order of accuracy of the discretization
scheme. Angular momentum is conserved, and there are no geometric source
terms that arise from integrating a vector field component by component.



Discretization and the 3D Semi-Discrete formalism

Determining the values of e.g., the momentum flux at the faces of a control volume
would be a simple affair if we did not wish to account for mathematical discontinuities.

However, discontinuities are physically
important in a shock-dominated model
atmosphere, and capturing and evolving
discontinuities frees us from having to
cluster points in regions of steep evolving
gradients --- something commonplace in
the CZ-to-corona system. We therefore
construct a generalized solution to the
3D compressible MHD system in
curvilinear coordinates.

Figure from rom lllenseer & Duschl (2009)

Discontinuities must be evolved in a manner consistent with the evolution of continuous regions.
Regions where discontinuities may occur (i.e., the faces edges and corners of control volumes
where physical fluxes are calculated) intersect multiple control volume cells and can therefore be
considered to be on a ‘staggered’ grid relative to the primary control volume.

To construct a generalized, discretized solution, we must reconstruct solutions in these staggered
regions, evolve them, and then project them back onto the principal control volumes.




Discretization and the Semi-Discrete formalism

The mathematical formalism of our discretization scheme is described in detail in Abbett & Bercik
(2014). Our approach essentially extends the method of lllenseer & Duschl (2009) to a fully 3D,
non-directionally split, curvilinear grid. The finite volume discretization for a component of the
vector momenta along a ) face of a control volume is shown below:
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Discretization and the 3D Semi-Discrete formalism

The numerical tensors are expressed in terms of the physical momentum fluxes normal to surfaces
of the curvilinear mesh element. For our particular example they take the form:

Tz (uijr) = cos 0,1 (wijg) — sin0;T,9(w; k)

Tqﬁz(ui,j,k) = COS Hij(ui,j,k) — sin 9jT¢9(ui,j,k)

T9z<ui,j,k) = COS 9jT9r<ui7j7k) — sin HjTGG(ui,j,k)

Finally, the explicit update is performed, and the state vector is updated:
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(Pg)ijk = cosb;cos or(Pr)ijk + cos 0;sin ¢p(Dy)ijr — sinb;(Dz)ijx

(Pg)ijk = —Sin@k(Dz)ijk + €0 Ok(Dy)ijk

The integrals are calculated using a simple, high-order Gaussian interpolation, and point values
of the physical momentum fluxes at cell faces are calculated from cell centers using piecewise-
continuous, non-directionally split interpolation polynomials T(u; ;). Before discussing

interpolations central to the method, we turn to the other vector equation of the MHD system:
Faraday’s Law.



Faraday’s law, Constrained transport, and the solenoidal constraint:

1 0B 1 1

The basic essence of any CT scheme is to simply define magnetic fields at cell faces, and update
the components of the magnetic field in a quasi-2D fashion by taking the curl of the electric field
along edges of a control volume. In principle, this ensures the divergence-free nature of the
magnetic field accurate to numerical round-off error

However, the presence of discontinuities in the transverse components of the field at control
volume surfaces presents a challenge in the context of a finite volume formalism over a
generalized curvilinear mesh. There are three staggered regions where discontinuities may occur:

e Corner regions can have discontinuities in two coordinate directions and involve four control volume cells;
e FEdge regions can have discontinuities in one coordinate direction and involve two control volume cells;
e Central regions cannot have discontinuities and involve a single control volume.

We extend the method of Kissmann and Pomoell (2012), and in Abbett & Bercik (2014) derive a
semi-discrete, finite volume method of Constrained Transport (CT) on a fully-3D curvilinear grid.
What follows is the the final form of the 3D discretization of Faraday’s law above:




Faraday’s law, Constrained transport, and the solenoidal constraint:
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Integrals are calculated numerically using Gaussian integration along the edges of the control
volume, and the electric fields here are numerical constructions that propagate transverse

discontinuities.



Faraday’s law, Constrained transport, and the solenoidal constraint:

Where the numerical representation of electric fields along cell edges take into account
discontinuities in each transverse direction. For example, the qb component takes the form:
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We now require volume-averaged values at cell centers in order to properly evaluate point values
of (1) Maxwell stresses and Lorentz forces; and (2) point values of magnetoacoustic wave speeds

along faces of the control volume (used in the integral update of the vector momentum
conservation equation.



Faraday’s law, Constrained transport, and the solenoidal constraint:

One cannot interpolate face-averaged components of the magnetic field to obtain their volume
averaged cell-centered counterparts in a way that is mathematically consistent with our
formalism. We must therefore evolve volume-centered averages using CT electric fields:

1 roB 1 1
—f—dV:—— c«(VXE)dV =—-— c(AixE)dA
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The above governing equation is used to discretize the vector induction equation, and numerical integrations use
the same CT electric fields along cell averages that are used to update the face-centered components of the
magnetic field. Thus, volume centered quantities are fully consistent with the CT scheme, and the solenoidal
constraint is maintained to numerical roundoff. Solutions take the form:
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Faraday’s law, Constrained transport, and the solenoidal constraint:

And the other components take the form:
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Once integrated and updated, the field is projected to the base coordinate system.



Piecewise continuous high-order fully-3D polynomial interpolation:

To evaluate the previous integrals, and calculate high-order fluxes and electric fields
along faces and edges of a curvilinear control volume, we utilize a non-directionally split
27-point 3D stencil of cell-centered quantities determined from the following
interpolating polynomial (based on a 3D Taylor expansion).
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The stencil is determined by enforcing the definition of cell-averages in either spherical
or Cartesian geometries (for spherical geometries x=r,y=0,z=¢) :

1 XijpHAX Vi1 tmAY 20 +nAz
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Substituting the previous Taylor polynomial into this expression, and evaluating it for
all 27 surrounding points (shown in the figure) yields an invertable system of
equations for the coefficients a; in terms of known, cell-centered quantities. It is
important to note that the integrations must be carried out in physical space, where

X1/ 2 HIAX Y i1/ 2 4MAY 2y 4o +nAz
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r’sinfdrdfd¢  spherical

Once the system is inverted and the stencil determined for each coefficient of the
Taylor polynomial, we have the high-order interpolating polynomial necessary to

specify the components of the MHD state vector at each face of any control volume
in terms of known, discrete, centered, cell-averaged quantities.



Advantages of the fully 3D approach:

High accuracy --- important for large-scale calculations where high-
resolution becomes computationally expensive

Prevent grid anisotropies --- important to not introduce off-axis,
anisotropic grid diffusion, thus preventing non-physical
reconnections and variations in resistive and viscous heating

Maintains symmetries independent of the choice of coordinate
systems --- i.e., spherical waves are more accurately represented in
Cartesian grids, and planar waves are more accurately represented
in spherical grids

Eliminates unphysical alignments: Eliminates possibility of spurious
alignments of features along coordinate axes

Inexpensive: Surprisingly, the approach is computationally efficient,
and compares well with the directionally-split scheme.
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Direct Stabilization:

All codes require some form of stabilization; for our high-order formalism, this need is most
apparent near shock fronts. The key is to employ a stabilization scheme that is robust, yet
preserves the high-order nature of the solution away from shock fronts. We developed the
following method called Direct Stabilization (DS), since it uses a direct measure of calculated
discontinuities in components of the state vector at each integration point along control
volume faces. The interpolating polynomial is cast in terms of both a high order polynomial,
and a low-order stabilizing term:

q;. ;4 (r,0,9,1) = qufj,k (r,0,0,1)+ qufj’k (r,0,0,1)

where
wh = L 6" = qu:j,k (”i-l/z’ej,(pk)_ql'L-l,j,k(’”i-1/z’9j,¢k)‘
Wl +WO 5]—[ L 0 . 0
y n = qz',j,k(ri-l/z’ ja¢k)_Qi-1,j,k(’§—1/z’ j’¢k)‘
A%% =
w, +w 2 2
: 01 qu; = \/(ql‘ljj,k(’/;‘—l/Z’Hj’q)k)) +(Qil;1,j,k(7;'—l/2’0j’¢k))
Wo = St L p H H 2 H 2
(0" +&4q, +¢,) q, = (qz',j,k(”i—l/z’gj’ﬁbk)) +(qi—1,j,k(ri—1/2’9j’¢k))
1
Wl =
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Addressing the challenge of robustness:

Test, test, and test some
more....
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Conclusion:

We have successfully developed, and are currently testing the properties of a new
version of the RADMHD software with the capability to perform global calculations
at non-uniform resolution in spherical geometries. The numerical scheme has been
updated to incorporate a high-order fully-3D non-directionally split stencil in the
explicit sub-step to enhance accuracy in large-scale calculations where spatial
resolution is at a premium.

While non-uniform gridding is an invaluable tool, and now commonplace in large-
scale MHD codes (including this one), the challenging nature of evolving surface
convection coupled with large-scale phenomena in the solar atmosphere (and the
disparate temporal and spatial scales involved) compelled us to also revisit the base
numerical schemes of our code.

We have now progressed to the point where global and active region-scale
simulations in a high-resolution, dynamically evolving, global magnetic field can be
initiated. We are currently relaxing a convective state and coupled atmosphere in a
large-scale spherical wedge using the new formalism, and will report on the results
in the hear future.




