
Robust and Efficient Cartesian Mesh Generation for

Component-Based Geometry

M.J. Aftosmis*

U.S. Air Force Wright Laboratory / NASA Ames
Moffett Field, CA 94035

M.J. Berger† J.E. Melton‡
 Courant Institute NASA Ames Research Center
 New York, NY 10012 Moffett Field, CA 94035

*. Aerospace Engineer, Senior Member AIAA
†. Prof. Dept. of Comp. Sci., Member AIAA
‡. Aerospace Engineer, Senior Member AIAA

This paper is declared a work of the U.S. Government and
is not subject to copyright protection in the United States.

Abstract
This work documents a new method for rapid and

robust Cartesian mesh generation for component-
based geometry. The new algorithm adopts a novel
strategy which first intersects the components to
extract the wetted surface before proceeding with vol-
ume mesh generation in a second phase. The intersec-
tion scheme is based on a robust geometry engine that
uses adaptive precision arithmetic and which auto-
matically and consistently handles geometric degener-
acies with an algorithmic tie-breaking routine. The
intersection procedure has worse case computational
complexity of O(N logN) and is demonstrated on test
cases with up to 121 overlapping and intersecting com-
ponents including a variety of geometric degeneracies.

The volume mesh generation takes the intersected
surface triangulation as input and generates the mesh
through cell division of an initially uniform coarse
grid. In refining hexagonal cells to resolve the geome-
try, the new approach preserves the ability to direc-
tionally divide cells which are well-aligned with local
geometry. The mesh generation scheme has linear
asymptotic complexity with memory requirements
that total approximately 14 words/cell. The mesh gen-
eration speed is approximately 106cells/minute on a
195Mhz RISC R10000 workstation.

I. Introduction

The past several years have seen a large resur-
gence of interest in adaptive Cartesian mesh algo-
rithms for application to problems involving complex
geometries. Refs. [1-12], among others, have proposed
flow solvers and mesh generation schemes intended
for use with arbitrary geometries. Since generating
suitable Cartesian meshes is relatively quick, and the
process can be fully automated, much of the on-going
research focuses on quick extraction of CFD-ready
geometry from the CAD databases to provide easy
access to accurate solutions of Euler equations within
the design cycle.

Viewing configurations on a component basis has
several conceptual advantages over treatments which
work with a single complete configuration. The most
obvious of these is that components can be translated/

rotated with respect to one another without requiring
user intervention or a time consuming return to CAD
in order to extract new intersection information and a
new CFD-ready description of the wetted surface.
Many approaches begin with a surface triangulation
already constrained to the intersection curves of the
components[9]. By starting upstream in the process,
the component-based approach requires only that each
piece of the geometry be described as a single closed
entity. Thus, relative motion of parts may be pre-pro-
grammed or even computed as a result of a design
analysis. The approach offers obvious advantages for
automation through external, macroscopic control.

This flexibility comes at the expense of added com-
plexity within the grid generation process. Since com-
ponents may overlap, the possibility exists that a
Cartesian cell-surface intersection detected during
mesh generation may be entirely internal to the con-
figuration, and thus all such intersections must be
classified as “exposed” (retain) or “internal” (reject).
Even if the vast majority of such intersections are
actually part of the wetted surface, all intersections
have the possibility of being internal, and therefore
must be tested. An analysis of the mesh generation
procedure documented in Refs.[1] and [13] revealed
that up to 60% of the computation was dedicated to the
resolution of this issue.

Although several approaches toward streamlining
the process exist, the most attractive appears to be one
which avoids the issue of intersection classification
altogether. By first intersecting all components
together, one can extract precisely the wetted surface
so that all subsequent Cartesian cell intersections are
guaranteed to be “exposed” and therefore retained.
The remaining mesh generation problem may then be
treated as if it were a single component problem.

While conceptually straightforward, efficient imple-
mentation of such an intersection algorithm is deli-
cate. Each component is assumed to be described by a
surface triangulation and the solution involves a
sequence of problems in computational geometry. The

 - 2 -

algorithm requires intersecting a number of non-con-
vex polyhedra with arbitrary genus. This makes con-
vex polyhedra intersection algorithms inappropriate.
Each intersected triangle must be broken up into
smaller ones, which is a problem in constrained trian-
gulation. Finally, the deletion of the interior triangles
requires inside/outside determination and neighbor
painting. Since intersecting triangles from different
components must be considered to be in general posi-
tion, the specters of robustness and finite precision
mathematics must be considered as well. Section II
presents a robust algorithm for computing these inter-
sections and extracting the wetted surface on realisti-
cally complex examples. This algorithm is quite
general and has numerous applications outside the
specific field of CFD.

Section III presents the volume mesh generation
algorithm with particular attention to the efficiency of
data structures and the speed of intersection tests.
The approach preserves the ability to directionally
refine mesh cells. This feature comes in response to
earlier work which concluded that isotropic cell divi-
sion may lead to excessive numbers of Cartesian cells
in three dimensions[13]. This work suggested that
lower dimensional features may frequently be resolved
by directional division of Cartesian cells.

II. Component Intersection

The problem of intersecting the various compo-
nents of a given configuration and extracting the wet-
ted surface may be viewed as a series of smaller
problems not uncommon in computational geometry.
This section briefly discusses some of the key aspects
involved in the process. Focus centers on the topics of
proximity searching, primitive geometric operations,
exact arithmetic and algorithms for breaking geomet-
ric degeneracies.

A. Proximity Queries

Without special care, the intersection algorithm
can result in implementations which have an asymp-
totic complexity of O(N2). The primary culprit here is
the repetition of geometric searches to determine a list
of candidate triangles on all components which may
intersect with a given triangle on the polyhedron
under consideration.

A number of data structures have been proposed to
speed up this process, and one particularly suitable
method is the Alternating Digital Tree (ADT) algo-
rithm developed in Ref.[14]. Inserting the triangles
into an ADT makes it possible to identify the list of
candidate triangles in O(logN) operations. As a result,
intersections need only be checked against candidate

triangles from the list of spanning triangles returned
from the tree. The basic algorithm outlined here fol-
lows from [14] and is implemented using the balanced
tree approach detailed in Ref. [13].

The ADT is a hyperspace search technique which
converts the problem of searching for finite sized
objects in d dimensions to the simpler one of partition-
ing a space with 2d dimensions. Since searches are not
conducted in physical space, objects which are physi-
cally close together are not necessarily close in the
search space. This fact can hamper the tree’s perfor-
mance in some instances[15]. In an effort to improve
lookup times, we therefore first apply a component
bounding-box filter on the triangles before inserting
them into the tree. Since they cannot possibly partici-
pate in an intersection, triangles which are not con-
tained by the bounding box of a component other than
their own are not inserted into the tree. This filtering
not only reduces the tree size but also improves the
probability of encountering an intersection candidate
within the tree, since the structure is not crowded with
irrelevant geometry.

B. Intersection of Generally Positioned Trian-
gles in R3

With the task of intersecting a particular triangle
reduced to an intersection test between that triangle
and those on the list of candidates provided by the
ADT, the intersection problem is re-cast as a series of
tri-tri intersection computations. Figure 1 shows a
view of two intersecting triangles as a model for dis-
cussion. Each intersecting tri-tri pair will contribute
one segment to the final polyhedra that will comprise
the wetted surface of the configuration. The assump-
tion of data in general (as opposed to arbitrary) posi-
tion implies that the intersection is always non-
degenerate. Triangles may not share vertices, and
edges of tri-tri pairs do not intersect exactly. Thus, all
intersections will be proper. This restriction will be
lifted in later sections with the introduction of an auto-
matic tie-breaking algorithm.

Figure 1: An intersecting pair of generally positioned trian-
gles in three dimensions.

Several approaches exist to compute such intersec-
tions but a particularly attractive technique comes in
the form of a Boolean test. This predicate can be per-
formed robustly and quickly using only multiplication

a

b

c

1

2

0

 - 3 -

and addition, thus avoiding the inaccuracy and robust-
ness pitfalls associated with division using fixed width
representations of floating point numbers. It is useful
to present a rather comprehensive treatment of this
intersection primitive because subsequent sections on
robustness will return to these relations.

For two triangles to properly intersect in three
dimensional space, the following conditions must
exist:

1. Two edges of one triangle must cross the plane of
the other.

2. If condition (1) exists, there must be a total of two
edges (of the six available) which pierce within the
boundaries of the triangles.

One approach to checking these conditions is to
directly compute the pierce points of the edges of one
triangle in the plane of the other. Pierce locations from
one triangle’s edges may then be tested for contain-
ment within the boundary of the other triangle. This
approach, while conceptually simple, is error prone
when implemented using finite precision mathematics.
In addition to demanding special effort to trap out
zeros, the floating point division required by this
approach may result in numbers not exactly repre-
sentable by finite width words. This results in a loss of
control over precision and may cause serious problems
with robustness.

An alternative to this slope-pierce test is to con-
sider a Boolean check based on computation of a triple
product without division. A series of such logical
checks have the attractive property that they permit
one to establish the existence and connectivity of the
segments without relying on the problematic computa-
tion of the pierce locations. The final step of computing
the locations of these points may then be relegated to
post-processing where they may be grouped together
and, since the connectivity is already established,
floating point errors will not have fatal consequences.

The Boolean primitive for the 3D intersection of an
edge and a triangle is based on the concept of the
signed volume of a tetrahedron in R3. This signed vol-
ume is based on the well established relationship for
the computation of the volume of a simplex, T, in d

dimensions in determinate form (see for ex. [16]). The
signed volume V(T) of the simplex T with vertices

 in d dimensions is:

(1)

where vkj
 denotes the jth coordinate of the kth vertex

with . In 3 dimensions, eq. {2}
gives six times the signed volume of the tetrahedron
Tabcd.

(2)

 This volume serves as the fundamental building
block of the geometry routines. It is positive when
(a,b,c) forms a counterclockwise circuit when viewed
from an observation point located on the side of the
plane defined by (a,b,c) which is opposite from d. Posi-
tive and negative volumes define the two states of the
Boolean test while zero indicates that the four vertices
are exactly coplanar. If the vertices are indeed copla-
nar, then the situation constitutes a “tie” which will be
resolved with a general tie-breaking algorithm pre-
sented shortly. In applying this logical test to edge ab

and triangle (0,1,2) in fig. 1, ab crosses the plane if and
only if (iff) the signed volumes T012a and T012b have
opposite signs. Figure 2 presents a graphical look at
the application of this test.

Figure 2: Boolean test to check if edge ab crosses the plane
defined by triangle (0,1,2) through computation of two
signed volumes.

With a and b established on opposite sides of the
plane (0,1,2), all that remains is to determine if ab

pierces within the boundary of the triangle. This will
be the case only if the three tetrahedra formed by con-
necting the end points of ab with the three vertices of
the triangle (0,1,2) (taken two at a time) all have the
same sign, that is:

(3)

Figure 3 illustrates this test for the case where the
three volumes are all positive.

Figure 3: Boolean test for pierce of a line segment ab within
the boundary of a triangle (0,1,2).

After determining the existence of all the segments
which result from intersections between tri-tri pairs
and connecting a linked list of all such segments to the

v0 v1 v2 … vd, , , ,()

d!V Tv0v1v3…v
d

() det

v00
v01

… v0
d 1–

1

… … … … …
v

d0
v

d1
… v

dd 1–
1

=

j k, 0 1 2 … d, , , ,{ }∈

6V Tabcd()

a0 a1 a2 1

b0 b1 b2 1

c0 c1 c2 1

d0 d1 d2 1

a0 d–
0

a1 d–
1

a2 d–
2

b0 d–
0

b1 d–
1

b2 d–
2

c0 d–
0

c1 d–
1

c2 d–
2

= =

b

0

2

1

P

a

b

0

2

1

Vol(T0,1,2,a) < 0
b

0

2

1

P

a

Vol(T0,1,2,b) > 0

a

V Ta12b() 0< V Ta01b() 0< V Ta20b() 0<∧ ∧[] or

V Ta12b() 0> V Ta01b() 0> V Ta20b() 0>∧ ∧[]

a

b

0

2

1

p

a

b

0

2

1

p

Ta,1,2,b Ta,0,1,b Ta,2,0,bb

0

2

1

p

a

 - 4 -

triangles that intersect to produce them, all that
remains is to actually compute the locations of the
pierce points. This is accomplished by using a para-
metric representation of each intersected triangle and
the edge which pierces it. The technique is a straight-
forward three dimensional generalization of the 2D
method presented in reference [16].

C. Retriangulation of Intersected Triangles

The final result of the intersection step is a list of
segments linked to each intersected triangle. These
segments divide the intersected triangles into polygo-
nal regions which are either completely inside or out-
side of the body. In order to remove the portions of
these triangles which are inside, we triangulate these
polygonal regions within each intersected triangle and
then reject the triangles which lie inside the body. Fig-
ure 4 shows a typical intersected triangle divided into
two polygonal regions with the segments resulting
from the intersection calculation highlighted. In the
sketch, the two polygonal regions formed by the trian-
gle’s boundary and the segments from the intersection
have been decomposed into sets of triangles. Since the
segments may cut the triangle arbitrarily, a pre-dispo-
sition for creating triangles with arbitrarily small
angles exists. In an effort to keep the triangulations as
wel behaved as possible, we employ a two dimensional
Delaunay algorithm within each original intersected
triangle. Using the intersection segments as con-
straints, the algorithm runs within each intersected
triangle producing new triangles which may be
uniquely characterized as either inside or outside of
the configuration.

Figure 4: Decomposition of intersected triangle using a con-
strained Delaunay triangulation algorithm (constraining
segments shown as heavy solid lines).

A variety of approaches to constructing the
Delaunay triangulation of a planar graph exist (see
surveys in Refs.[17],[18]). However, since each trian-
gulation to be constructed starts with the three verti-
ces of the original intersected triangle (vertices a,b,c in
Fig. 4) the incremental algorithm of Green and Sib-
son[19] is appealing. Starting with the three vertices
defining the original triangle, the pierce points are
successively inserted into the evolving triangulation.
After all the pierce points are inserted, the constraints

are enforced using a simple recursive edge swapping
routine.

Figure 5: Incircle testing of point d for containment within
the circumcircle of (a,b,c). Since d is contained, the diagonal
of the quadrilateral abcd is swapped (cb→ad).

The Green and Sibson algorithm is extensively doc-
umented in the literature. Its central operation is the
local application of an “incircle predicate” which deter-
mines which edges need swapping to make the trian-
gulation Delaunay after each successive point
insertion. This predicate examines the four points of a
quadrilateral formed by two triangles which share a
common edge. In figure 5, if the point d falls within the
circle defined by (a,b,c) then the diagonal of the quad
must be swapped (cb→ad).

Relating this discussion to the signed volume calcu-
lation of eq.{2} starts by recognizing that if one
projects the 2D coordinates (x,y) of each point in the
incircle test onto a unit paraboloid z = x2 + y2 with the
mapping:

(4)

then the four points of the quadrilateral form a
tetrahedron in 3D, and the incircle predicate may be
viewed precisely as an evaluation of the volume of this
tetrahedron. If V(Ta’,b’,c’,d’) > 0 then point d lies
within the circle defined by (a,b,c) and edge cb must be
swapped to da for the triangulation to be Delaunay.

Figure 6 shows an example of this procedure
applied within a single fuselage triangle which has
been intersected by a wing leading edge. This example
is interesting in that it demonstrates the need for
robustness within the intersection and retriangulation
algorithms. In this example, the wing leading edge has
pierced a triangle of the fuselage. The intersection
involves 52 constraining segments. Component data is
considered “exact” in single precision, and the inter-
section points are computed using double precision.
This example involved no tie-breaking, however, the
succession of embedded enlargements in fig.6 make it
clear that irregularity of the resulting triangulations
demand robust implementation of the fundamental
geometry routines.

a
b

c

1 2
3

4

a

b

c

d
a

b

d

c

kx ky,() kx ky kx
2

ky
2

+, ,()→ with k a b c d, , ,{ }∈

 - 5 -

Figure 6: Retriangulation within a large fuselage triangle
pierced by a wing leading edge component with significantly
higher resolution. The 52 segments describing the intersec-
tion of the leading edge constrain the triangulation.

D. Inside/Outside Determination

The intersection and constrained triangulation rou-
tines of the two preceding sections have resulted in a
set of triangles which may now be uniquely classified
as either internal or exposed on the wetted surface of
the configuration. The only step left is then to delete
those triangles which are internal to the configuration.
This is a specific application of the classic “point in
polyhedron” problem for which we adopt a ray-casting
approach. This method fits particularly well within the
framework of proximity testing and primitive geomet-
ric computations described in sections II.A-B.

Simply stated, we determine if a point p=(p0, p1, p2)
is within the ith component of a configuration Ωi if a
ray, r, cast from p intersects the closed boundary ¶Ωi an
odd number of times. The preceding two sections dem-
onstrated that both the intersection and triangulation
algorithms could be based upon Boolean operations
checking the sign of the 3 x 3 determinant in eq.{2},
and the same is true for the ray casting step. Assum-
ing that r is cast along a coordinate axis (+x for exam-
ple) it may be truncated just outside the +x face of the
bounding box for the entire configuration This
ray may then be represented by a line segment from
the test point (p, p

1
, p

2
) to (, p

1
, p

2
) and the

problem reduces to a proximity query as in II.A and
the segment-triangle intersection algorithm of II.B.
The ADT returns the list of intersection candidates
while the logical tests of Figs. 2 and 3 use eq.{2} to
check for intersections. Counting the number of such
intersections determines a triangle’s status as inside
or outside.

To avoid casting as many rays as there are trian-
gles, a “painting algorithm” allows each tested triangle
to pass on its status to the three triangles which share
its edges. The algorithm then recurses upon the neigh-
boring triangles until a constrained edge is encoun-
tered at which time it stops. In this way the entire
configuration is “painted” using very few ray casts.
The recursive algorithm is implemented using a stack
to avoid the overhead associated with recursion.

 Figures 7 and 8 present two brief examples. Figure
7 is a helicopter example problem containing 82 com-
ponents with 320,000 triangles. The configuration
includes external stores, and armaments. The com-
plete intersection, retriangulation, and removal of
interior geometry required ~200sec on workstation
with a 195 Mhz MIPS R10000 processor. Figure 8
shows two close-ups of the inboard nacelle on a high-
wing transport configuration. The frame on the left
shows the final geometry after intersection, retriangu-
lation, and trimming while the right frame shows a
view inside by removing the outboard section of the
wing with a cutting plane through the center of the
nacelle. This configuration consisted of 86 components
described by 214,000 triangles.

Figure 7: Helicopter example containing 82 components
ncluding external stores and armaments.

Figure 8: (left) Close-up of inboard nacelle of high-wing
transport after intersection, retriangulation and removal of
interior geometry, frame shows leading edge slat, wing sec-
tion, pylon nacelle, nacelle strakes, and various other engine
components. (right) view inside after removal of internal
geometry. The configuration consisted of 86 components
described using 214,000 triangles

E. Geometric Degeneracies, Floating Point
Arithmetic and Tie-Breaking

With the intersection, retriangulation and ray cast-
ing algorithms all wholly dependent upon the determi-
nant computation of eq.{2}, it is imperative to insure
accurate evaluation of this volume. In fact, all opera-
tions which establish the connectivity of the final exte-
rior surface triangulation involve computation of the
sign of this determinant by design. As a result of this

(b)

(a)

(c) (d)

Ω∂ x

Ω∂ x ε+

 - 6 -

choice, the robustness of the overall procedure ulti-
mately equates to a robust implementation of the
signed volume calculation. Fortunately, evaluation of
this determinant has long been the subject of study in
computational geometry and computer sci-
ence[20][21][22].

Computing the sign of eq.{2} constitutes a topologi-

cal primitive, which is an operation that tests an input
and results in one of a constant number of cases. Such
primitives can only classify, and constructed objects
(like the actual locations of the pierce points in II.B)
cannot be determined without further processing.
These primitives do, however, provide the intersec-
tions implicitly, and this information suffices to estab-
lish the connectivity of the segment list describing the
intersection.

The signed volume computation for arbitrarily posi-
tioned geometry can return a result which is positive
(+1), negative (–1) or zero (0), where are non-
degenerate cases and zero represents some geometric
degeneracy. Implementation of this predicate, how-
ever, can be tricky, since it requires that we distin-
guish round-off error from an exact zero. Such
considerations usually lead practitioners to implement
the predicate with exact (arbitrary precision) arith-
metic or with strictly integer math. Unfortunately,
while much hardware development has gone into
rapid floating point computation, few hardware archi-
tectures are optimized for either the arbitrary preci-
sion or integer math alternatives.

Floating Point Filtering and Exact Arithmetic
In an effort to perform as much of the computation

as possible on the floating-point hardware, we first
compute eq.{2} in floating point, and then make an a-

posteriori estimate of the maximum possible value of
the round-off error, εRE max. If this error is larger than
the computed signed volume, then the case is consid-
ered indeterminate and we invoke the adaptive preci-
sion exact arithmetic procedure developed by
Shewchuk[22]. If the case turns out to be identically
zero, we then resolve the degeneracy with a general
tie-breaking algorithm based on a virtual perturbation
approach.

An error bound, εRE max, for floating point computa-
tion of the 3x3 determinant in eq.{2} was derived in
Ref.[22]. The derivation accounts not only for the error
in computing the determinant, but also for the error
associated with floating point computation of the
bound itself. This bound may be expressed as:

(5)

where the circle (o) overstrike on +, -, and x indicates
that the operations are evaluated using floating point
operations on IEEE 754 compliant hardware. ε in
eq.{5} is precisely where p is the number of bits
of the significand used by the machine. p may be
evaluated by determining the largest exponent for
which when the sum and equality are
tested with floating point. On most 32-bit platforms
with exact rounding for double precision and

 for single.
In practice, only a very small fraction of the deter-

minant evaluations fail to pass the test of eq.{5}. For
the helicopter example problem shown earlier in Fig-
ure 7, the intersection required 1.37M evaluations of
the determinant, and of these, only 68 (0.005%) failed
to pass the floating point filter of eq.{5}.

Tie-Breaking and Degeneracy
With degenerate geometry identified by the exact

arithmetic routines, we must now remove the restric-
tion imposed by the initial assumption that all input
geometric data lie in general position. The richness of
possible degeneracies in three dimensions cannot be
overstated, and without some systematic method of
identifying and coping with them, handling of special
cases can permeate, or even dominate the design of a
geometric algorithm[23]. Rather than attempt to imple-
ment an ad-hoc tie-breaking algorithm based on intu-
ition and programmer skill, we seek an algorithmic
approach to this problem.

Simulation of Simplicity (SoS) is one of a category
of general approaches to degenerate geometry known
generically as “virtual perturbation algorithms”[24].
The basic premise is to assume that all input data
undergoes a unique, ordered perturbation such that all
ties are broken (i.e. data in special position is per-
turbed into general position). When a tie (an exact zero
in eq.{2}) is encountered, we rely on the perturbations
to break the tie. Since the perturbations are both
unique and constant, any tie in the input geometry
will always be resolved in a topologically consistent
manner. Since the perturbations are virtual, no given
geometric data is ever altered.

The perturbation ε(i, j) at any point is a function of
the point’s index, and the coordinate
direction, . Ref. [24] advocates a perturba-
tion of the form:

(6)

This choice indicates that the perturbation applied to
ij is greater than that on kl iff or .

To illustrate, consider the two dimensional version
of the simplex determinant in eq.{2}.

(7)

1±

εREmax 7ε 56ε2
+() αA αB αC⊕ ⊕()⊗= with

αA a2 o d2 b0 o d0() c1 o d1()⊗ b1 o d1() c0 o d0()⊗⊕()⊗=

αB b2 o b2 c0 o d0() a1 o d1()⊗ c1 o d1() a0 o d0()⊗⊕()⊗=

αC c2 o d2 a0 o d0() b1 o d1()⊗ a1 o d1() b0 o d0()⊗⊕()⊗=

ε 2 p–=

1.0 2 p–⊕ 1.0=

p 53=
p 24=

i 0 1 … N 1–, , ,{ }∈
j 1 … d, ,{ }∈

ε i j,() ε2
i δ j–⋅

= where

0 i N 1–≤ ≤
1 j d≤ ≤

δ d≥

i k<() i k=() j l>()∧

det M[] det

a0 a1 1

b0 b1 1

c0 c1 1

=

 - 7 -

If the points a,b,c are assumed to be indexed with
 respectively, then taking δ = 2 gives a

perturbation matrix with:

(8)

Taking the determinant of the perturbed matrix
 yields:

(9)

Since the data, a,b,c span a finite region in 2-space,
intuitively one can always choose a perturbation small
enough such that increasing powers of ε always lead to
terms with decreasing magnitude. Ref.[24] shows that
this observation holds for a perturbation of the form of
eq.{6}. If ever evaluates to an exact zero, the
sign of the determinant will be determined by the sign
of the next significant coefficient in the ε expansion. If
the next term also yields an exact zero, we continue
checking the signs of the coefficients until a non-zero
term appears. In eq.{9} the coefficient on the fifth term
(ε3/2) is a constant (−1) and since sign(-1) is always
negative, this term will never be degenerate.

The three dimensional variant of the simplex deter-
minant (eq.{2}) has 15 non-zero coefficients before the
first constant is encountered. Appendix I lists the hier-
archy of terms in the 3-D expansion.

Figure 9: Two improperly intersecting right parallelepipeds
with degeneracies resolved using virtual perturbations and
exact arithmetic.

Figure 9 contains a deceptively simple looking
application of the tie-breaking algorithm. The large
and small cubes in the sketch abut against each other
exactly. In addition to sharing the same geometry at
location a, the cubes not only have three co-planar
faces, but also have exact improper intersections
where edge bc abutts against ad. The figure shows the
result after computing the intersection, re-triangulat-
ing, and extracting the wetted surface. SoS resolved

this case by imposing virtual perturbations such that
the two polyhedra overlapped properly, consistently
resolving not only the co-planar degeneracy, but also
all improper edge-edge intersections. This geometry
required 504 evaluations of eq.{2}, 186 of which evalu-
ated to zero and required SoS for tie-breaking

III. Volume Mesh Generation

Generation of the Cartesian volume mesh begins
with the final wetted surface triangulation resulting
from the process in section II. This approach relieves
the volume mesher of concerns about internal geome-
try and thus substantially reduces the complexity of
the task.

A. Approach

The domain for a coordinate aligned Cartesian
mesh may be defined by its minimum and maximum
coordinates and . Initially, this region is uni-
formly discretized with Nj divisions in each Cartesian
dimension, . By repeatedly dividing
body intersecting cells and their neighbors, a final
geometry-adapted mesh is obtained.

The mesh is considered to be an unstructured col-
lection of Cartesian hexahedra. While many authors
elect to traverse adaptively refined Cartesian meshes
with an octtree data structure,[4][9][11] adopting an
unstructured approach more readily preserves the
ability to directionally refine the cells. This flexibility
can be important since earlier work has suggested
that permitting only isotropic refinement in three
dimensions may lead to excessive numbers of cells for
geometries with many length scales and high aspect
ratio components[13].

Proximity Testing
Initially, the NT surface triangles in {T} are

inserted into an ADT. This insures that returning the
subset Ti. of triangles actually intersected by the ith

Cartesian cell will have complexity proportional to
. When a cell is subdivided, a child cell inherits

the triangle list of its parent. As the mesh subdivision
continues, the triangle lists connected to a surface
intersecting (“cut”) Cartesian cell will get shorter by
approximately a factor of 4 with each successive subdi-
vision. This observation implies that there is a
machine dependent crossover at which it becomes
faster to perform an exhaustive search over a parent
cell’s triangle list, rather than perform an ADT lookup
to get a list of intersection candidates for cell i. This
crossover level is primarily determined by the number
of elements in NT and the processor’s instruction cache

i 0 1 2, ,=

Λ
ε2 1– ε2 2–

1

ε22 1– ε22 2–
1

ε24 1– ε24 2–
1

=

MΛ M Λ+=

det MΛ[] det M[] ε1 4/ b0– c0+()+=

ε1 2/ b1 c1–()+ ε1 a0 c0–()+

ε3 2/ 1()+ ε2 a– 1 c1+()+

ε9 4/ 1–()+ HOT+

det M[]

a

b

c

d

xo x1

j 0 1 … d, 1–, ,()=

NT()log

 - 8 -

size. Conducting searches over the parent’s triangle
list implies that progressively smaller Cartesian cells
may be intersected against T with ever decreasing
computational complexity. For the large example prob-
lems in this paper, the crossover from ADT to exhaus-
tive lookup usually occurs for cells with about

.

Geometric Refinement
All surface intersecting Cartesian cells in the

domain are initially automatically refined a specified
number of times (Rmin)j. By default this level is set to
be 4 divisions less than the maximum allowable num-
ber of divisions (Rmax)j in each direction. When a cut
cell is tagged for division, the refinement is propagated
several (usually 3-5) layers into the mesh using a
“buffering” algorithm which operates by sweeps over
the faces of the cells.

Further refinement is based upon a curvature
detection strategy similar to that originally presented
in Ref.[1]. This is a two-pass strategy which first
detects angular variation of the surface normal, ,
within each cut cell and then examines the average
surface normal behavior between two adjacent cut
cells.

Taking k as a running index to sweep over the set of
triangles, Ti, is the jth component of the vector sub-
traction between the maximum and minimum normal
vectors in each Cartesian direction.

(10)

The min(-) and max(-) are performed over all elements
of Ti. The angular variation within cell i is then simply
the direction cosines of

(11)

Similarly, (φj)r,s measures the jth component of the
angular variation between any two adjacent cut cells r

and s. With denoting the unweighted unit normal
vector within any cut cell i, the components of are:

(12)

If θj or φj in any cell exceeds an angle threshold
(usually set to) the offending cell is tagged for
subdivision in direction j.

B. Data Structures

Since we have adopted an unstructured approach
and intend to construct meshes with 106 or 107 cells,
its imperative that the data structures be as compact
as possible. The system described in this section pro-

vides all cell geometry and cell-to-vertex pointers in 96
bits.

Figure [10] shows a model Cartesian mesh covering
the region . Every cell in such a mesh can be
uniquely located by the integer coordinates
which correspond to the vertex closest to . If we allo-
cate m bits of memory to store each integer ij, the
upper bound on the permissible total number of verti-
ces in each coordinate direction is 2m.

On a mesh with Nj prescribed nodes, performing Rj

cell refinements in each direction will produce a mesh
with a maximum integer coordinate of
which must be resolvable in m bits.

(13)

Thus, the maximum number of cell subdivisions that
may be performed in each direction is:

(14)

where the floor indicates rounding down to the next
lower integer. Substituting back into eq.{13} gives the
total number of vertices which we can address in each
coordinate direction.

(15)

Thus, the floor in eq.{14} insures that Mj can never
exceed 2m.

Figure 10: Cartesian mesh with Mj divisions in each direc-
tion discretizing the region from xo to x1.

Currently, we permit up to bits per direc-
tion which gives about addressible locations in
each coordinate, while still permitting all three indices
to be packed into a single 64-bit integer.

Figure [11] gives an example of the vertex number-
ing within an individual cell. This system has been

2000 NT
i

5000< <

n̂

V j

V j max nk j
() min nk j

()–= k Ti∈()∀

V

θi j
()cos

max nk
j

() min nk
j

()–

V
---=

n̂i

φr s,

φ j()
r s,cos

n j
r

n j
s

–

n̂r n̂s–
--------------------------=

25°

x0 x1,[]
i0 i1 i2, ,()

xo

2Rj N j 1–() 1+

2Rj N j 1–() 1 2
m≤+

Rmax()
j 2

2
m

1–()log
2

N j 1–()log–=

M j 2
Rmax

j
N j 1–() 1+=

0
1

2

M1 p
artitio

ns

M
2
 p

a
rt

it
io

n
s

M
0 partition

s

x10
x11

x12
, ,()

xo0
xo1

xo2
, ,()

m 21=
2.1 106×

 - 9 -

adopted from the study of crystalline structures spe-
cialized for cubic lattices*. Within this analogy, the cell
vertices are numbered with a boolean index of 0 (low)
or 1 (high) in each direction. The crystal direction of
each vertex is shown in square brackets. Reinterpret-
ing this 3-bit pattern as an integer yields a unique
numbering scheme (from 0-7) for each vertex on the
cell.

Figure 11: Vertex numbering with in a cell, numbers in
square brackets [-] are the crystal directions of each vertex.

For any cell i, is the integer position vector
. If we also know the number of times

that i has been divided in each direction, Rj, we can
express its other 7 vertices directly.

(16)

Since the powers of two in this expression are simply a
left shift of the bitwise representation of the integer
subtraction , vertices V1-V7 can be com-
puted from V0 and Rj at very low cost. In addition, the
total number of refinements in each direction will be a
(relatively) small integer, thus its possible to pack all
three components of into a single 32-bit word.

C. Cut-Cell Intersection

A central algorithm of any Cartesian mesh genera-
tion strategy involves testing the surface for intersec-
tion with the Cartesian cells. While the general edge-
triangle intersection algorithm in section II.B would

*. Such systems are quite general and can be used to
describe cubic, orthorhombic, tetrahedral, or hexagonal
cells. See [25].

provide one method of testing for such intersections, a
more attractive alternative comes from the literature
on computer graphics[26][27].

This algorithm is highly specialized for use with
coordinate aligned regions, and while it could be
extended to non-Cartesian cells, or even other cell
types, its speed and simplicity would be compromised.
Since rapid cut-cell intersection is an important part
of Cartesian mesh generation, we present a few cen-
tral operations of this algorithm in detail.

Figure 12 shows a two dimensional Cartesian cell c

which covers the region . The points (p, q,...,v) are
assumed to be vertices of c’s candidate triangle list Tc.
Each vertex is assigned an “outcode’’ associated with
its location with respect to cell c. This boolean code has
2 bits for each coordinate direction. Since the region is
coordinate aligned, a single inequality must be evalu-
ated to set each bit in the outcode of the vertices.

Figure 12: outcode and facecode setup of a coordinate aligned
region in two dimensions.

Using the operators & and | to denote bitwise appli-
cations of the “and” and “or” boolean primatives, can-
didate edges (like rs) can be trivially rejected if

outcoder &outcodes ≠��0
Similarly, since (outcodet | outcodev) =��0, the
segment must be completely contained.

If all the edges of a triangle, like tuv, cannot be triv-
ially rejected, then there is a possibility that it inter-
sects the 0000 region. Such a polygon can be tested
against the face-planes of the region by constructing a
logical bounding box (using a bitwise “or”) and testing
against each facecode of the region. In Fig. 12 testing

facecodej & (outcodet | outcodeu | outcodev) (17)
∀j∈(0, 1, 2, ..., 2d-1)

results in a non-zero only for the 0100 face.
When an intersection point, such as p’ or t’, is com-

puted, it can be classified and tested for containment
on the boundary of by examination of its out-
code. However, since these points lie degenerately on
the 01XX boundary, the contents of this bit may not be
trustworthy. For this reason, we mask out the ques-

0
1

2

[000]
[010]

[011]
[001]

[100]

[101]
[111]

[110]

V0

V4

V1

V5

V2

V6

V3

V7

V 0

V00
V01

V02
, ,()

V1 V0 0 0 2
Rmax2 R2–

, ,()+=

V2 V0 0 2
Rmax1 R1–

0, ,()+=

V3 V0 0 2
Rmax1 R1–

2
Rmax2 R2–

, ,()+=

V4 V0 2
Rmax0 R0–

0 0, ,()+=

V5 V0 2
Rmax0 R0–

0 2
Rmax2 R2–

, ,()+=

V6 V0 2
Rmax0 R0–

2
Rmax1 R1–

0, ,()+=

V7 V0 2
Rmax0 R0–

2
Rmax1 R1–

2
Rmax2 R2–

, ,()+=

Rmax j R j–

R

c d,[]

1000 0100

0010

00011001

1010 0110

0101

0000

facecode1=0100

f
a
c
e
c
o
d
e
0
=
1
0
0
0

facecode2=0010

facecode3=0001

p

qr

s

t u

v

t’

p’

(c0,c1)

(d0,d1)

c d,[]

c d,[]

 - 10 -

tionable bit before examining the contents of these
outcodes. Applying “not” in a bitwise manner yields:

(outcodep’ & (¬facecode1)) = 0 while
(outcodet’ & (¬facecode1)) ≠ 0

which indicates that t’ is on the face, while p’ is not.
There are clearly many alternative approaches for

implementing the types of simple queries that this sec-
tion describes. However, an efficient implementation of
these operations is central to the success of a Cartesian
mesh code. The bitwise operations and comparisons
detailed in the proceeding paragraphs generally exe-
cute in a single machine instruction making this a par-
ticularly attractive approach.

IV. Results

The intersection algorithm described in §II and the
mesh generator of §III have been exercised on a variety
of example problems. The presentation of numerical
results includes several example meshes and an exam-
ination of the asymptotic performance of the algorithm.
All computations were performed on a MIPS R10000
workstation with a 195Mhz CPU.

A. Example Meshes

High Speed Civil Transport
Figure 13 depicts two views of a 4.72M cell mesh

constructed around a proposed supersonic transport
design. This geometry consists of 8 polyhedra, two of
which have non-zero genus. These components include
the fuselage, wing, engine pylons and nacelles. The
original component triangulation was comprised of
81460 triangles before intersection and 77175 after the
intersection algorithm re-triangulated the intersec-
tions and extracted the wetted surface. Of the 1.2M
calls placed to the determinant computation (eq.{2}),
870 were degenerate and required tie-breaking. The
intersection required 15 seconds of workstation time.

The mesh shown contains 11 levels of cells where all
divisions were isotropic. Mesh generation required 4
minutes and 20 seconds. The maximum memory
required was 252Mb.

Helicopter Configuration
Figure 14 contains two views of a mesh produced for

a non-symmetric helicopter configuration similar to
that shown earlier in fig.7. This example began with
202000 triangles describing 82 components. After
intersection and re-triangulation, 116000 triangles
remained on the exterior. The final mesh contained
5.81M Cartesian cells with about 587000 actually
intersecting the geometry. The mesh shown was
refined 10 times to produce cells at 11 levels of refine-
ment in the final mesh. Since the fuselage and wing
components span the bounding boxes of most other

components, virtually all triangles were loaded into the
ADT resulting in a rather sluggish intersection compu-
tation which required just over 3 minutes of CPU time.
The mesh was computed in approximately 5 minutes
and 20 seconds.

Figure 13: Upper: Cutting planes through 4.72M cell Carte-
sian mesh for a proposed HSCT geometry. Lower: Close-up of
mesh near outboard nacelle. .

Figure 14: Upper: Cartesian mesh for attack helicopter con-
figuration with 5.81M cells in the final mesh. Lower: close-up
of mesh through left wing and stores.

 - 11 -

Multiple Aircraft
The final mesh adds three twin tailed fighter geom-

etries to the helicopter example. The helicopter is off-
set from the axis of the lead fighter to emphasize the
asymmetry of the mesh. Each fighter has flow-through
inlets and is described by 13 component triangula-
tions. The entire configuration contained 121 compo-
nents described with 807000 triangles before
intersection and 683000 after. A total of 5916 determi-
nant evaluations were degenerate and invoked the
SoS routines.

Figure 15 presents an overview of the mesh. The
upper frame shows portions of 3 cutting planes
through the geometry. The lower frame in this figure
shows one cutting plane at the tail of the rear two air-
craft, and another just under the helicopter geometry.
The final mesh includes 5.61M cells, and required a
maximum of 365Mb to compute. Mesh generation time
was approximately 6 minutes and 30 seconds.

Figure 15: Cutting planes through mesh of multiple aircraft
configuration with 5.61M cells and 683000 triangles in the
triangulation of the wetted surface.

B. Asymptotic Performance

The number of triangles in the surface and the per-
centage of the mesh cells which are cut by this trian-
gulation are two of the primary factors which effect
mesh generation speed. The examples in the previous
section have been chosen to demonstrate mesh genera-
tion speed for realistically complex geometries.

In order to assess the asymptotic behavior of the
algorithm, the mesh generator was run on a teardrop
geometry described by 7520 triangles. To prevent vari-
ation in the percentage of cut cells which are divided
at successive refinements, the angle thresholds trig-
gering mesh refinement were set to zero. This choice
forced all cut cells to be tagged for refinement at every
level.

A series of 11 meshes were produced for this inves-
tigation with between 7.5x103 and 1.7x106 cells in the
final grids. The initial meshes used consisted of 6x6x6,
5x5x6, and 5x5x5 cells and were subjected to 3-9 levels
of refinement.

Figure 16 contains a scatter plot of cell number vs.
CPU time including file reading/writing. The solid line
fitted to the data is the result of a linear regression.
The line has a slope of 4.01x10-5 seconds/cell and a cor-
relation coefficient of 0.9997. This equates to 24950
cells per second or 1.50x106 cells per minute for this
example. This strong correlation to a straight line indi-
cates that the mesh generator produces cells with lin-
ear asymptotic complexity. This result is optimal for
any method that operates cell-by-cell.

Figure 16: Scatter plot of mesh size vs. computation time.
195Mhz MISC R10000 CPU.

103 104 105 106 107

Number of Cells

1

10

100

C
P

U
 ti

m
e

(s
ec

on
ds

)

Timing Data
y 4.01

5–×10 x 0.18+=

 - 12 -

V. Conclusions and Future Work

We have developed a new Cartesian mesh genera-
tion algorithm for efficiently and robustly producing
geometry adapted Cartesian meshes for complex con-
figurations. The method uses a component-based
approach for surface geometry and pre-processes the
intersection between these components so that only
the wetted surface is passed to the mesh generator.

The surface intersection algorithm uses exact
arithmetic and adopts an algorithmic approach for
handling degenerate geometry. The robustness of this
approach was demonstrated on examples with nearly
6000 degenerate geometry evaluations.

The mesh generation algorithm was exercised on a
variety of cases with complex geometries, involving up
to 121 components described by 807000 triangles. The
mesh generation operates on the order of 106 cells/
minute on moderately powered workstations. Its mem-
ory usage is approximately 14 words/cell so that typi-
cally only 54Mb is required to generate a mesh of 1M
cells. The example meshes contained up to 5.8M cells.
An evaluation of the asymptotic performance of this
algorithm indicated that cells are generated with lin-
ear computational complexity.

One aspect which has not been completely
addressed is the degree to which anisotropic cell divi-
sion can be used to improve the efficiency of adaptive
Cartesian simulations on realistic geometries. Since
the current method has the ability to refine cells direc-
tionally, this topic will be addressed in future work.

VI. Acknowledgments

M. Berger was supported by AFOSR grant 94-1-
0132, and DOE grants DE-FG02-88ER25053 and
DEFG02-92ER25139 and by RIACS at NASA Ames.
The authors gratefully acknowledge the use of
Jonathan Shewchuk’s adaptive precision floating point
software. In addition we acknowledge E.E-Chien and
J. O’Rourke for helpful conversations, e-mail and other
contributions.

VII. References

[1] Melton, J.E., Automated Three-Dimensional Cartesian
Grid Generation and Euler Flow Solutions for Arbi-
trary Geometries. Ph.D. Thesis, U. of Ca, Dept. of
Mech. Eng., Davis CA, Apr. 1996.

[2] Gaffney, R., Hassan, H., and Salas, M., “Euler Calcula-
tions for Wings Using Cartesian Grids.” AIAA Paper
87-0356. Jan. 1987.

[3] Berger, M.J., and LeVeque, R.J., “An Adaptive Cartesian
mesh Algorithm for the Euler Equations in Arbitrary
Geometries.” AIAA Paper 89-1930. Jun. 1989.

[4] Coirier, W.J., and Powell, K.G., “An Accuracy Assess-
ment of Cartesian-Mesh Approaches for the Euler
Equations.” AIAA Paper 93-3335-CP. Jun. 1993.

[5] Quirk, J.J., “An Alternative to Unstructured Grids for
Computing Gas Dynamic Flows around Arbitrarily
Complex Two-Dimensional Bodies.” Computers Flu-
ids, Vol.23, No.1, pp. 125-142, 1994.

[6] Gooch, C.F., Solution of the Navier-Stokes Equations on
Locally-Refined Cartesian Meshes using State-Vector
Splitting. Ph.D. Dissertation, Department of Aeronau-
tics and Astronautics, Stanford University, Palo Alto,
CA., Dec. 1993.

[7] Melton, J.E., Enomoto, F.Y., and Berger, M.J., “3D Auto-
matic Cartesian Grid Generation for Euler Flows.”
AIAA Paper 93-3386-CP. Jun. 1993.

[8] Melton, J.E., Berger, M.J., Aftosmis, M.J., and Wong,
M.D., “3D Applications of a Cartesian Grid Euler
Method.” AIAA Paper 95-0853. Jan. 1995.

[9] Karman, S.L. Jr., “SPLITFLOW: A 3D Unstructured
Cartesian/Prismatic Grid CFD Code for Complex
Geometries.” AIAA Paper 95-0343. Jan. 1995.

[10] Melton, J., Pandya, S., and Steger, J.L., “3D Euler Flow
Solutions Using Unstructured Cartesian and Pris-
matic Grids.” AIAA Paper 93-0331. Jan. 1993.

[11] Coirier, W.J., An Adaptively Refined Cartesian Cell
Method for the Euler and Navier-Stokes Equations.
Ph.D. Dissertation, Department of Aerospace Engi-
neering, Univ. of Michigan, Ann Arbor MI, Sep. 1994.

[12] Pember, R.B., Bell, J.B., Colella, P., Crutchfield, W.Y.,
Welcome, M.L., “Adaptive Cartesian Grid Methods for
Representing Geometry in Inviscid Compressible
Flow.” AIAA Paper 93-3385-CP. Jun.1993.

[13] Aftosmis, M.J., Melton, J.E., and Berger, M.J., “Adapta-
tion and Surface Modeling for Cartesian Mesh Meth-
ods.” AIAA Paper 95-1725-CP, Jun 1995.

[14] Bonet, J., and Peraire, J., “An Alternating Digital Tree
(ADT) Algorithm for Geometric Searching and Inter-
section Problems.” Int. J. Num. Meth. Engng, 31:1-17,
1991.

[15] Samet, H., The Design and Analysis of Spatial Data
Structures. Addison-Wesley, 1990.

[16] O’Rourke, J., Computational Geometry in C. Cambridge
Univ. Press, 1994.

[17] Mavriplis, D.J., “Unstructured Mesh Generation and
Adaptivity.” 26th Computational Fluid Dynamics Lec-
ture Series, von Karman Institute, Mar 1995.

[18] Barth, T.J., “Aspects of Unstructured Grids and Finite-
Volume Solvers for the Euler and Navier-Stokes Equa-
tions.” 25th Computational Fluid Dynamics Lecture
Series, von Karman Institute, Mar 1994.

[19] Green, P.J., and Sibson, R., “Computing the Dirichlet
Tessalation in the Plane.” The Computer Journal,
2(21):168-173, 1977.

[20] Chvátal, V., Linear Programming. Freeman, San Fran-
cisco, Ca., 1983.

[21] Knuth, D.E., Axioms and Hulls. Lecture Notes in Comp.
Sci. #606., Springer-Verlag, Heidelberg, 1992.

[22] Shewchuk, J.R., ‘‘Adaptive Precision Floating-Point
Arithmetic and Fast Robust Geometric Predicates.”
CMU-CS-96-140, School of Computer Science, Carn-
egie Mellon Univ., 1996. currently also available at:
http://www.cs.cmu.edu/afs/cs/project/quake/pub-
lic/papers/robust-predicates.ps

[23] Chazelle, B., et al., “Application Challenges to Computa-
tional Geometry: CG Impact Task Force Report.” TR-
521-96. Princeton Univ., Apr. 1996.

[24] Edelsbrunner H., and Mücke E.P., “Simulation of Sim-
plicity: A Technique to Cope with Degenerate Cases in

 - 13 -

Geometric Algorithms.” ACM Transactions on Graph-
ics, 9(1):66-104, Jan. 1990.

[25] Van Vlack, L.H., Elements of Material Science and Engi-
neering. Addison-Wesley Inc. 1980.

[26] Cohen, E., “Some Mathematical Tools for a Modeler’s
Workbench,” IEEE Comp. Graph. and App., 3(7), Oct.
1983.

[27] Voorhies, D., Graphics Gems II: Triangle-Cube Intersec-
tions. Academic Press, Inc. 1992.

Appendix
Performing the ε expansion from section II.E on the

 determinant in eq.{2} results in 17 non-constant
coefficients before the first constant is encountered in
a power of ε. Of these, 15 are unique.

To illustrate we compute the determinant of the
perturbed three dimensional simplex matrix:

 Table A.I lists the terms in this expansion.

4 4×

det M Λ+[] det

a0 a1 a2 1

b0 b1 b2 1

c0 c1 c2 1

d0 d1 d2 1

ε1 2/ ε1 4/ ε1 8/ 1

ε4 ε2 ε1 1

ε32 ε16 ε8 1

ε256 ε128 ε64 1

+

=

Table A.1:

ε? coefficient

ε0

ε1/8

ε1/4

ε1/2

ε1

ε5/4

ε3/2

ε2

ε5/2

ε4

ε8

ε33/4

ε17/2

ε10

ε21/2 (+1)

det

a0 a1 a2 1

b0 b1 b2 1

c0 c1 c2 1

d0 d1 d2 1

det

b0 b1 1

c0 c1 1

d0 d1 1

1–()det

b0 b2 1

c0 c2 1

d0 d2 1

det

b1 b2 1

c1 c2 1

d1 d2 1

1–()det

a0 a1 1

c0 c1 1

d0 d1 1

det
c0 1

d0 1

1–()det
c1 1

d1 1

det

a0 a2 1

c0 c2 1

d0 d2 1

det
c2 1

d2 1

1–()det

a1 a2 1

c1 c2 1

d1 d2 1

det

a0 a1 1

b0 b1 1

d0 d1 1

1–()det
b0 1

d0 1

det
b1 1

d1 1

det
a0 1

d0 1

 - 14 -

